首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2801篇
  免费   189篇
  国内免费   108篇
  2024年   2篇
  2023年   66篇
  2022年   47篇
  2021年   93篇
  2020年   84篇
  2019年   138篇
  2018年   154篇
  2017年   97篇
  2016年   64篇
  2015年   107篇
  2014年   146篇
  2013年   213篇
  2012年   107篇
  2011年   142篇
  2010年   109篇
  2009年   98篇
  2008年   94篇
  2007年   134篇
  2006年   118篇
  2005年   125篇
  2004年   98篇
  2003年   86篇
  2002年   98篇
  2001年   57篇
  2000年   43篇
  1999年   33篇
  1998年   57篇
  1997年   46篇
  1996年   32篇
  1995年   47篇
  1994年   38篇
  1993年   28篇
  1992年   44篇
  1991年   23篇
  1990年   27篇
  1989年   15篇
  1988年   18篇
  1987年   21篇
  1986年   25篇
  1985年   28篇
  1984年   25篇
  1983年   17篇
  1982年   14篇
  1981年   13篇
  1980年   11篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
排序方式: 共有3098条查询结果,搜索用时 57 毫秒
1.
2.
Addition of a combination of insulin, dexamethasone and EGF at seeding time to cultured rat hepatocytes in serum-free medium caused a selective increase in the biosynthesis of particular cytokeratin components. This increase was prominent during the first day in culture. No significant increases were detected in the absence of hormones or in the presence of either hormones added alone or in pairs, except in the case of insulin plus dexamethasone, which yielded an effect close to that obtained with the three factors. Interestingly, the latter condition also maintained a high level of albumin production over a 6-day period in culture.  相似文献   
3.
In the present study, we investigated the mechanism by which the antidiabetic drug phenformin increases insulin binding to its receptors in IM-9 human cultured lymphocytes. After a 24-hr preincubation, phenformin induced a twofold increase in specific 125I-insulin binding, and removal of phenformin was followed 6 hr later by a return in binding to control levels. This effect of phenformin on insulin binding was not a consequence of either inhibition of cell growth, changes in cellular cyclic adenosine monophosphate (AMP) levels, or changes in guanosine triphosphate (GTP) content. Since phenformin is known to inhibit various aspects of cellular energy metabolism, the relationship between 125I-insulin binding and energy metabolism in IM-9 cells was investigated. The phenformin-induced increase in insulin binding to IM-9 cells was related to a time- and dose-dependent decrease in ATP levels. Other agents that lowered ATP levels, including antimycin, dinitrophenol, and 2-deoxyglucose, also raised insulin binding. These studies indicated, therefore, that phenformin enhances insulin binding to receptors on IM-9 cells and that this effect on insulin receptors may be related to alterations in metabolic functions that are reflected by a lowering of ATP levels.  相似文献   
4.
《Cell reports》2020,30(6):1835-1847.e9
  1. Download : Download high-res image (127KB)
  2. Download : Download full-size image
  相似文献   
5.
Disruption of insulin-like growth factor I (IGF-I) signaling is a key step in the development of cancer or neurodegeneration. For example, interference of the prosurvival IGF-I/AKT/FOXO3 pathway by redox activation of the stress kinases p38 and JNK is instrumental in neuronal death by oxidative stress. However, in astrocytes, IGF-I retains its protective action against oxidative stress. The molecular mechanisms underlying this cell-specific protection remain obscure but may be relevant to unveil new ways to combat IGF-I/insulin resistance. Here, we describe that, in astrocytes exposed to oxidative stress by hydrogen peroxide (H2O2), p38 activation did not inhibit AKT (protein kinase B) activation by IGF-I, which is in contrast to our previous observations in neurons. Rather, stimulation of AKT by IGF-I was significantly higher and more sustained in astrocytes than in neurons either under normal or oxidative conditions. This may be explained by phosphorylation of the phosphatase PTEN at the plasma membrane in response to IGF-I, inducing its cytosolic translocation and preserving in this way AKT activity. Stimulation of AKT by IGF-I, mimicked also by a constitutively active AKT mutant, reduced oxidative stress levels and cell death in H2O2-exposed astrocytes, boosting their neuroprotective action in co-cultured neurons. These results indicate that armoring of AKT activation by IGF-I is crucial to preserve its cytoprotective effect in astrocytes and may form part of the brain defense mechanism against oxidative stress injury.  相似文献   
6.
The adsorption and immobilisation of human insulin onto the bio-compatible nanosheets including graphene monoxide, silicon carbide and boron nitride nanosheets were studied by molecular dynamics simulation at the temperature of 310 K. After equilibration, heating and 100 ns production molecular dynamic runs, it was found that the insulin was adsorbed and immobilised onto the considered surfaces in a native folded state. The structural parameters, including root-mean-square deviation and fluctuation, surface accessible solvent area, radius of gyration (Rg) and the distance between the centre of the mass of immobilised protein and the surface of the considered nanosheets, were measured, analysed and discussed. The energetics of the studied systems such as the interaction energy between protein and nanosheet was also measured and addressed. The discussions were centred on the structural and energetic parameters of the protein and nanosheets, including charge density, hydrophobicity, hydrophilicity and residue polarity. The results also showed that the active site of C-termini of chain B played an important role in the adsorption process and this could be helpful in the protection of insulin in its smart delivery and release applications.  相似文献   
7.
This study investigated the protective effects of two polysaccharides (CPA-1 and CPB-2) from Cordyceps cicadae against high fructose/high fat diet (HF/HFD) induced obesity and metabolic disorders in rats. Rats were either fed with normal diet or HF/HFD and treated with CPA-1 and CPB-2 (100 and 300 mg/kg) for 11 weeks. Administration of CPA-1 and CPB-2 significantly and dose dependently reduced body and liver weight, insulin and glucose tolerance, serum insulin and glucose levels. Furthermore, serum and hepatic lipid profiles, liver function enzymes and proinflammatory cytokines (TNF-α, IL-1β and IL-6) were markedly reduced. Additionally, CPA-1 and CPB-2 treatment alleviated hepatic oxidative stress by reducing lipid peroxidation level (MDA) and upregulating glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activities as well as ameliorated histological alterations through the reduction of hepatic lipid accumulation. These results suggested that the polysaccharides from C. cicadae showed protective effects against HF/HFD induced metabolic disturbances and may be considered as a dietary supplement for treating obesity.  相似文献   
8.
The flux through branched-chain alpha-ketoacid dehydrogenase and the activity of the branched-chain alpha-ketoacid dehydrogenase complex were measured in hepatocytes isolated from fed, starved and alloxan diabetic rats. The highest rate of branched-chain alpha-ketoacid oxidation was found in hepatocytes isolated from starved rats, slightly lower in those from fed rats, and significantly lower in diabetic hepatocytes. The amount of the active form of branched-chain alpha-ketoacid dehydrogenase was only slightly diminished in diabetic hepatocytes, whereas the flux through the dehydrogenase was inversely correlated with the rate of endogenous ketogenesis. The same was observed in hepatocytes isolated from starved rats when branched-chain alpha-ketoacid oxidation was measured in the presence of added oleate. In both cases the diminished flux through the dehydrogenase, restored by a short preincubation of hepatocytes with insulin, was paralleled by a decrease of fatty acid-derived ketogenesis. The significance of these findings is discussed in relation to the role of insulin in branched-chain alpha-ketoacid oxidation in liver of diabetic rats.  相似文献   
9.
《Cell metabolism》2020,31(1):77-91.e5
  1. Download : Download high-res image (179KB)
  2. Download : Download full-size image
  相似文献   
10.
The rapid increase in protein synthesis that occurs on addition of insulin (1 mU/ml) to stepped-down 3T3 cells was blocked by pre-incubation of the cells with pertussis toxin. Cholera toxin on the other hand stimulated protein synthesis and this effect was insensitive to actinomycin D and inhibited by pro-treatment of the cells with phorbol dibutyrate to deplete cell protein kinase C. Insulin was found to cause a rapid and transient increase in diacylglycerol (DAG) synthesis. The insulin-induced increase in diacylglycerol was blocked by pertussis toxin. Exogenous DAG (10 M) stimulated protein synthesis within 1 hour. The results suggest that insuIin stimulates ribosomal activity through a signal mechanism that involves a G-protein mediated activation of phospholipase C to increase DAG levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号