首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12009篇
  免费   924篇
  国内免费   721篇
  2024年   37篇
  2023年   246篇
  2022年   300篇
  2021年   471篇
  2020年   478篇
  2019年   523篇
  2018年   529篇
  2017年   383篇
  2016年   389篇
  2015年   467篇
  2014年   512篇
  2013年   716篇
  2012年   370篇
  2011年   425篇
  2010年   310篇
  2009年   453篇
  2008年   439篇
  2007年   513篇
  2006年   429篇
  2005年   405篇
  2004年   341篇
  2003年   344篇
  2002年   321篇
  2001年   218篇
  2000年   198篇
  1999年   239篇
  1998年   241篇
  1997年   229篇
  1996年   197篇
  1995年   205篇
  1994年   214篇
  1993年   216篇
  1992年   208篇
  1991年   172篇
  1990年   170篇
  1989年   170篇
  1988年   136篇
  1987年   136篇
  1986年   134篇
  1985年   182篇
  1984年   195篇
  1983年   123篇
  1982年   137篇
  1981年   123篇
  1980年   87篇
  1979年   93篇
  1978年   61篇
  1977年   51篇
  1976年   42篇
  1973年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
The effect of ciprofibrate, a hypolipidemic drug, was examined in the metabolism of palmitic (C16:0) and lignoceric (C24:0) acids in rat liver. Ciprofibrate is a peroxisomal proliferating drug which increases the number of peroxisomes. The palmitoyl-CoA ligase activity in peroxisomes, mitochondria and microsomes from ciprofibrate treated liver was 3.2, 1.9 and 1.5-fold higher respectively and the activity for oxidation of palmitic acid in peroxisomes and mitochondria was 8.5 and 2.3-fold higher respectively. Similarly, ciprofibrate had a higher effect on the metabolism of lignoceric acid. Treatment with ciprofibrate increased lignoceroyl-CoA ligase activity in peroxisomes, mitochondria and microsomes by 5.3, 3.3 and 2.3-fold respectively and that of oxidation of lignoceric acid was increased in peroxisomes and mitochondria by 13.4 and 2.3-fold respectively. The peroxisomal rates of oxidation of palmitic acid (8.5-fold) and lignoceric acid (13.4-fold) were increased to a different degree by ciprofibrate treatment. This differential effect of ciprofibrate suggests that different enzymes may be responsible for the oxidation of fatty acids of different chain length, at least at one or more step(s) of the peroxisomal fatty acid -oxidation pathway.  相似文献   
122.
Summary In the absence of a suitable energy source, mouse oocytes cultured in vitro resume, but fail to complete, meiotic maturation. However, little is known about the underlying mechanisms leading to this meiotic failure. We utilized pyruvate-deficient medium to test for the role of pyruvate throughout the meiotic maturation process. Germinal vesicle-stage (GV) oocytes underwent germinal vesicle breakdown (GVBD), but failed to form a polar body when cultured continuously in pyruvate-free medium. However, when GV oocytes were preincubated for 4 h in pyruvate-free medium containing dibutyryl cyclic adenosine monophosphate (dbcAMP) and then cultured in pyruvate-free medium, GVBD was markedly inhibited. Preincubation of GV oocytes in dbcAMP and cycloheximide, followed by culture in cycloheximide only, also inhibited GVBD. A longer preincubation period was required in the cycloheximide-dbcAMP case (12 h) than in pyruvate-free-dbcAMP medium situation (4 h). Strikingly, reassembly of the nuclear membrane without polar body formation was observed following GVBD in oocytes continuously cultured in pyruvate-free medium. The reassembled nuclear membrane increased in size with continued culture, and it surrounded partially-decondensed chromatin. Nuclear membrane reassembly also occurred in oocytes which had undergone GVBD during continuous culture in medium containing only cycloheximide. Reformation of nuclear membranes after GVBD was confirmed by electron-microscopic analyses of oocytes cultured in pyruvate-free medium or in the presence of cycloheximide. We conclude that both pyruvate and protein synthesis are required for nuclear membrane disassembly, whereas lack of pyruvate or protein synthesis is associated with interruption of the metaphase state and reassembly of the nuclear membrane. The evidence suggests that assembly and maintenance of an intact nucleus and its disintegration are all amenable to regulation by pyruvate, possibly via mechanism(s) involving protein synthesis.  相似文献   
123.
On artificial polyethylene membranes providing a thigmotropic signal, uredospores of the broad bean rust fungus Uromyces viciae-fabae differentiated a series of infection structures which in nature are necessary to invade the host tissue through the stomata. Within 24 h germ tubes, appressoria, substomatal vesicles, infection hyphae and haustorial mother cells were developed successively. Alterations in protein metabolism during infection structure differentiation of this obligate plant pathogen were analyzed in the absence of the host plant by high resolution two-dimensional polyacrylamide gel electrophoresis (2-DE) and silver staining. The norm pattern representing the 2-DE protein patterns of the whole developmental sequence of infection structures of U. viciae-fabae showed 733 spots. During infection structure differentiation 55 proteins were newly formed, altered in quantity, or disappeared. Major alterations in the protein pattern occurred during uredospore germination and when infection hyphae were formed. Uredospore germination was characterized by a decrease of acidic proteins and an increase mainly of proteins with isoelectric points ranging from weakly acidic to basic.Abbreviations 2-DE two-dimensional polyacrylamide gel electrophoresis - DAPI 4,6-diamino-phenylindol - kDa kilo Dalton - pl isoelectric point - PMSF phenylmethylsulfonyl fluoride - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   
124.
Cultures of the cyanobacterium Microcystis firma show rhythmic uptake and release of ammonia under conditions of carbon limitation. The massive removal of ammonia from the medium during the first light phase has little impact on the intracellular pH: a pH shift of less than 0.2 U towards the alkaline can be measured by in vivo 31P NMR. Furthermore, the energy status of the cells remains regulated. In vivo 15N NMR of M. firma, cultivated either with labelled nitrate or ammonia as the sole nitrogen source, reveals only gradual differences in the pool of free amino acids. Additionally both cultivation types show -aminobutyric acid, acid amides and yet unassigned secondary metabolites as nitrogen storing compounds. Investigating the incorporation of nitrogen under carbon limitation, however, only the amide nitrogen of glutamine is found permanently labelled in situ. While transamination reactions are blocked, nitrate reduction to ammonia can still proceed. Cation exchange processes in the cell wall are considered regarding the ammonia disappearance in the first phase, and the control of ammonia uptake is discussed with respect to the avoidance of intracellular toxification.Abbreviations GABA -aminobutyric acid - GOGAT glutamate synthase - GS glutamine synthetase - MDP methylene diphosphonate - MOPSO 3-(N-morpholino)-2-hydroxy-propanesulfonic acid - NDPS nucieoside diphosphosugars - NOE nuclear Overhauser effect - NMR nuclear magnetic resonance For convenience, the term ammonia is used throughout to denote ammonia or ammonium ion when there is no good evidence as to which chemical species is involved  相似文献   
125.
Abstract Over 200 strains of marine purple photosynthetic bacteria were isolated. Two strains showed antibiotic activity towards Saccharomyces cerevisiae and were tentatively identified as Chromatium purpuratum . Crude antibiotic, prepared by solvent extraction, showed a broad antimicrobial spectrum. The highest activity was found in the chromatophore fraction. Chromatographic separation of purified light harvesting complex from one strain, NKPB 031704, showed the presence of two separate pigmented compounds which were responsible for antimicrobial activity. Our findings reveal the unexpected ability of photosynthetic bacteria to produce broad spectrum antibiotics. In addition, this is the first example of intracellular localization of antibiotic activity in a marine bacterium.  相似文献   
126.
The discovery of two distinct succinate thiokinases in mammalian tissues, one (G-STK) specific for GDP/GTP and the other (A-STK) for ADP/ATP, poses the question of their differential metabolic roles. Evidence has suggested that the A-STK functions in the citric acid cycle in the direction of succinyl-CoA breakdown (and ATP formation) whereas one role of the G-STK appears to be the re-cycling of succinate to succinyl-CoA (at the expense of GTP) for the purpose of ketone body activation. A third metabolic participation of succinyl-CoA is in haem biosynthesis. This communication shows that in chemically induced hepatic porphyria, when the demand for succinyl-CoA is increased, it is the level of G-STK only which is elevated, that of A-STK being unaffected. The results implicate G-STK in the provision of succinyl-CoA for haem biosynthesis, a conclusion which is further supported by the observation of a high G-STK/A-STK ratio in bone marrow.  相似文献   
127.
Intact sediment cores were obtained from three New York lakes in May, July, and October 1981. Radioactive S (as 35SO 4 2− ) was added to the overlying water and cores were incubated without atmospheric exchange for one week near lake bottom temperatures. Headspace flux of 02 as an index of sediment respiration rates varied among lakes and seasonally within lakes. Acidic South Lake had the lowest respiration rate at all seasons and also the smallest net incorporation of the 35SO 4 2− . Summer net isotope transformation into ester sulfate and non-HI reducible S (pyrite and C-bonded S) constituents was 88.6%, 89.4%, and 59.7% of total sediment isotope for Oneida, Deer, and South, respectively. Seasonal variation of net isotope incorporation was observed in each lake as were differences in 35SO 4 2− partitioning into major S pools. Of the S constituents analyzed, HCl digestible S (volatile sulfides) was the smallest pool, while ester sulfate and non-HI reducible S together accounted for greater than 50% of S isotope transformation in all lakes. In addition, ester sulfate is the major product of dissolved SO 4 2− transformation and its formation results in less alkalinity generation than the formation of non-HI reducible S constituents. Thus ester sulfate transformation processes must be considered in calculating alkalinity generation by lake sediments. Financial support provided by Office of Water Research Technology (Project No. 13-096-NY). Financial support provided by Office of Water Research Technology (Project No. 13-096-NY).  相似文献   
128.
When acutely transferred to diluted seawater (SW), Procephalothrix spiralis and Clitellio arenarius regulate water content (g H2O/g solute free dry wt = s.f.d.w.) via loss of Na and Cl (µmoles/g.s.f.d.w.). The present study extends these observations to a greater range of salinities and determines the effects of long-term, stepwise acclimation to diluted seawaters. Final exposure to a given experimental seawater (70, 50, 30, 15%) was 48 hours. Osmolality (mOsm/kg H2O) and Na, K, and Cl ion concentrations (mEq/l) were determined in total tissue water and in the extracellular fluid of C. arenarius. Extracellular volume was determined as the 14C-polyethylene glycol space. Both species behaved as hyperosmotic conformers in diluted seawaters. However, reduction of the osmotic gradient between worm and medium occurred in P. spiralis, but not C. arenarius, in 30 and 15% SW. In both species, osmolality and Na, Cl, and K concentrations in total tissue water decreased with increased dilution of the SW. Water content increased with dilution of the medium but was lower than that which would be predicted based on approximation of the van't Hoff relation. This indicated the occurrence of regulatory volume decrease (RVD). In P. spiralis, in 70 or 50% SW, RVD was accompanied by loss of Na and Cl contents. However, in 30 or 15% SW, Na and Cl contents increased and in worms in 15% SW K content decreased. The latter movements of Na, Cl and K are indicative of cellular hysteresis and were associated with decreased viability, indicating the lower limits of regulatory ability in this species. In comparison, RVD in C. arenarius occurred in all diluted seawaters and was accompanied by loss of Na and Cl contents. In C. arenarius, evidence for reduced viability was absent. Removal of the supra- and subesophageal ganglia of C. arenarius resulted in retention of water, Na and Cl (g H2O or µmoles/g s.f.d.w.) in worms acclimated to 70% SW. Removal of the cerebral ganglia and cephalic glands of P. spiralis did not significantly influence regulation of water content.  相似文献   
129.
Laboratory microcosms were used to compare the effects of the littoral ostracod Cypridopsis vidua and the planktonic cladoceran Daphnia magna on community structure and metabolism. Filter-feeding by cladocerans, both in the presence and absence of ostracods, greatly reduced the abundance of planktonic algae when D. magna reached peak density around day 50; rotifers and euglenids were then limited to flocculent matter on the container bottom. Both net production and community respiration rates decreased as community composition changed. Microcosms containing ostracods as the only microcrustacean showed little reduction in total algal numbers but the otherwise dominant alga, Scenedesmus spp., was replaced by Ankistrodesmus spp. when peak ostracod density was reached around day 100. Rotifers were completely eliminated but euglenids were able to coexist with ostracods. Ostracods impacted community metabolism less than cladocerans, but depressed respiration slightly more than net production.  相似文献   
130.
Xanthobacter 124X when grom on 4-hydroxyphenylacetate was able to hydroxylate this compound yielding homogenisate. Ring fission of this latter compound gave maleylacetoacetate which was isomerized to fumarylacetoacetate. The isomerase involved resembled maleylacetoacetate isomerases in Gram-negative bacteria in that glutathione was required for activity. Fumarate and acetoacetate were both detected as products of the hydrolysis of fumarylacetoacetate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号