首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   3篇
  国内免费   22篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   8篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   2篇
  2013年   12篇
  2012年   4篇
  2011年   3篇
  2010年   6篇
  2009年   8篇
  2008年   9篇
  2007年   8篇
  2006年   3篇
  2005年   15篇
  2004年   9篇
  2003年   10篇
  2002年   4篇
  2001年   5篇
  1997年   1篇
  1994年   2篇
排序方式: 共有130条查询结果,搜索用时 360 毫秒
61.
为建立重金属超富集植物东南景天(Sedum alfredii)的毛状根诱导体系,采用发根农杆菌(Agrobacterium rhizogenes)A4侵染叶片,研究了预培养时间、侵染时间和共培养时间对毛状根诱导率的影响。结果表明,东南景天叶片外植体的预培养时间为48 h、农杆菌侵染时间为6 min、共培养时间为48 h是适宜的毛状根诱导时间,毛状根的诱导率可达85%。PCR检测表明诱导的毛状根中存在rol B基因片段。这是东南景天首次建立用发根农杆菌诱导毛状根体系。  相似文献   
62.
Soil and water contaminated with arsenic (As) pose a major environmental and human health problem in Bangladesh. Phytoremediation, a plant-based technology, may provide an economically viable solution for remediating the As-polluted sites. The use of indigenous plants with a high tolerance and accumulation capacity for As may be a very convenient approach for phytoremediation. To assess the potential of native plant species for phytoremediation, plant and soil samples were collected from four As-contaminated (groundwater) districts in Bangladesh. The main criteria used for selecting plants for phytoremediation were high bioconcentration factors (BCFs) and translocation factors (TFs) of As. From the results of a screening of 49 plant species belonging to 29 families, only one species of fern (Dryopteris filix-mas), three herbs (Blumea lacera, Mikania cordata, and Ageratum conyzoides), and two shrubs (Clerodendrum trichotomum and Ricinus communis) were found to be suitable for phytoremediation. Arsenic bioconcentration and translocation factors > 1 suggest that these plants are As-tolerant accumulators with potential use in phytoextraction. Three floating plants (Eichhornia crassipes, Spirodela polyrhiza, and Azolla pinnata) and a common wetland weed (Monochoria vaginalis) also showed high BCF and TF values; therefore, these plants may be promising candidates for cleaningup As-contaminated surface water and wetland areas. The BCF of Oryza sativa, obtained from As-contaminated districts was > 1, which highlights possible food-chain transfer issues for As-contaminated areas in Bangladesh.  相似文献   
63.
超富集植物蜈蚣草中砷化学形态的EXAFS研究   总被引:4,自引:0,他引:4  
采用同步辐射扩展X射线吸收精细结构(SREXAFS)技术研究了超富集植物蜈蚣草(PterisvittataL.)中As的化学形态及其在转运过程中的变化。结果表明,蜈蚣草中的As主要以As(Ⅲ)与O配位的形态存在。As(V)被植物吸收后,很快转化为As(Ⅲ),其转化过程主要发生在根部。As(Ⅲ)向地上部转运的过程中价态基本不变。在植物的根部和部分叶柄中存在少量与As-GSH相似的As-S结合方式,但是在As含量最高的羽叶中基本上未发现这种结合方式。与需要提取和分离过程的化学方法相比,采用EXAFS方法研究植物中的砷形态不需经过预分离或化学预处理就可以直接测定植物样品中元素的化学形态,因此可以避免样品预处理过程对As形态的干扰,并获得可靠的砷化学形态方面的信息。  相似文献   
64.
Hyperaccumulation by plants is a rare phenomenon that has potential practical benefits. The majority of manganese (Mn) hyperaccumulators discovered to date occur in New Caledonia, and little is known about their ecophysiology. This study reports on natural populations of one such species, the endemic shrub Maytenus founieri. Mean foliar Mn concentrations of two populations growing on ultramafic substrates with varying soil pHs were obtained. Leaf anatomies were examined by light microscopy, while the spatial distributions of foliar Mn in both populations were examined by qualitative scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). Plants growing on two different substrates were found to have very different mean dry weight (DW) foliar Mn concentrations. Light microscopy showed that the leaves had very distinct thick dermal structures, consisting of multiple layers of large cells in the hypodermis. In vivo X-ray microprobe analyses revealed that, in both populations, Mn sequestration occurred primarily in these dermal tissues. The finding here that foliar Mn is most highly localized in the nonphotosynthetic tissues of M. founieri contrasts with results from similar studies on other woody species that accumulate high Mn concentrations in their shoots.  相似文献   
65.
Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9‐induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild‐type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola.  相似文献   
66.
Abscisic acid (ABA) is a key phytohormone underlying plant resistance to toxic metals. However, regulatory effects of ABA on apoplastic transport in roots and consequences for uptake of metal ions are poorly understood. Here, we demonstrate how ABA regulates development of apoplastic barriers in roots of two ecotypes of Sedum alfredii and assess effects on cadmium (Cd) uptake. Under Cd treatment, increased endogenous ABA level was detected in roots of nonhyperaccumulating ecotype (NHE) due to up‐regulated expressions of ABA biosynthesis genes (SaABA2, SaNCED), but no change was observed in hyperaccumulating ecotype (HE). Simultaneously, endodermal Casparian strips (CSs) and suberin lamellae (SL) were deposited closer to root tips of NHE compared with HE. Interestingly, the vessel‐to‐CSs overlap was identified as an ABA‐driven anatomical trait. Results of correlation analyses and exogenous applications of ABA/Abamine indicate that ABA regulates development of both types of apoplastic barriers through promoting activities of phenylalanine ammonialyase, peroxidase, and expressions of suberin‐related genes (SaCYP86A1, SaGPAT5, and SaKCS20). Using scanning ion‐selected electrode technique and PTS tracer confirmed that ABA‐promoted deposition of CSs and SL significantly reduced Cd entrance into root stele. Therefore, maintenance of low ABA levels in HE minimized deposition of apoplastic barriers and allowed maximization of Cd uptake via apoplastic pathway.  相似文献   
67.
This study examines the heterogeneity of the Mn-hyperaccumulative trait in natural stands of the Australian rainforest tree species Gossia bidwillii (Myrtaceae). It is the only known Mn hyperaccumulator from Australia, and has an unusual spatial distribution of Mn in its leaves. G. bidwillii occurs naturally on a range of Mn-containing substrates including ultramafic soils. Leaf samples were collected from individual trees and four small stands, over a longitudinal range of ∼600 km. While no variation in the spatial distribution of foliar Mn was detected, considerable variation in Mn concentration was found. G. bidwillii was shown to accumulate Mn when growing on a variety of substrates, and dry weight (DW) foliar Mn concentrations of all trees sampled ranged between 2,740 and 27,470 μg g−1. The majority of samples exceeded 10,000 μg g−1, the threshold value for Mn hyperaccumulation. The overall frequency distribution of foliar Mn concentration was found to be bimodal, with a small outlier of extreme hyperaccumulators. Highest values were obtained from trees growing on a basaltic krasnozem clay, not ultramafic soil. Soil Mn concentrations were measured, and no relationship was found between foliar Mn concentrations and extractable Mn concentrations in host substrates. Some of the variation in the Mn-hyperaccumulative trait in G. bidwillii throughout its large natural distribution may reflect the unresolved taxonomy of this most widespread species in the genus Gossia. Ability to hyperaccumulate Mn may serve as an additional diagnostic tool for resolving this taxonomy.  相似文献   
68.
Specific plant species that can take up and accumulate abnormally high concentrations of elements in their aboveground tissues are referred to as “hyperaccumulators”. The use of this term is justified in the case of enormous element-binding capacity of plants growing in their natural habitats and showing no toxicity symptoms. An increasing interest in the study of hyperaccumulators results from their potential applications in environmental biotechnology (phytoremediation, phytomining) and their emerging role in nanotechnology. The highest number of plant species with confirmed hyperaccumulative properties has been reported for hyperaccumulators of nickel, cadmium, zinc, manganese, arsenic and selenium. More limited data exist for plants accumulating other elements, including common pollutants (chromium, lead and boron) or elements of commercial value, such as copper, gold and rare earth elements. Different approaches have been used for the study of hyperaccumulators – geobotanical, chemical, biochemical and genetic. The chemical approach is the most important in screening for new hyperaccumulators. This article presents and critically reviews current trends in new hyperaccumulator research, emphasizing analytical methodology that is applied in identification of new hyperaccumulators of trace elements and its future perspectives.  相似文献   
69.
锰毒及植物耐性机理研究进展   总被引:21,自引:0,他引:21  
任立民  刘鹏 《生态学报》2007,27(1):357-367
综述了近些年国内外关于锰毒及植物耐锰机理的研究成果,并指出了存在的问题和发展前景。锰毒是酸性土壤上限制作物产量的重要因子,国内外针对锰毒及植物耐受机制进行了相关研究,但进展较为缓慢。锰对植物的毒害效应体现在不同的细胞组织及生理生化水平上,不同植物耐受锰的机理也存在差异性,但大都集中在有机酸的螯合解毒、内部积累、外部排斥及氧化等方面。某些锰胁迫所诱导的基因也被筛选出来,并且部分生物学功能得以鉴定。此外,锰与其他营养元素间的协同或拮抗作用也得以阐述,伴随锰超富积植物-商陆在中国的发现,对锰毒及植物耐性机理的深入研究和探讨,将会对植物修复技术的开展产生理论和实践意义。  相似文献   
70.
Several Astragalus species have the ability to hyperaccumulate selenium (Se) when growing in their native habitat. Given that the biochemical properties of Se parallel those of sulfur (S), we examined the activity of key S assimilatory enzymes ATP sulfurylase (ATPS), APS reductase (APR), and serine acetyltransferase (SAT), as well as selenocysteine methyltransferase (SMT), in eight Astragalus species with varying abilities to accumulate Se. Se hyperaccumulation was found to positively correlate with shoot accumulation of S-methylcysteine (MeCys) and Se-methylselenocysteine (MeSeCys), in addition to the level of SMT enzymatic activity. However, no correlation was observed between Se hyperaccumulation and ATPS, APR, and SAT activities in shoot tissue. Transgenic Arabidopsis thaliana overexpressing both ATPS and APR had a significant enhancement of selenate reduction as a proportion of total Se, whereas SAT overexpression resulted in only a slight increase in selenate reduction to organic forms. In general, total Se accumulation in shoots was lower in the transgenic plants overexpressing ATPS, PaAPR, and SAT. Root growth was adversely affected by selenate treatment in both ATPS and SAT overexpressors and less so in the PaAPR transgenic plants. Such observations support our conclusions that ATPS and APR are major contributors of selenate reduction in planta. However, Se hyperaccumulation in Astragalus is not driven by an overall increase in the capacity of these enzymes, but rather by either an increased Se flux through the S assimilatory pathway, generated by the biosynthesis of the sink metabolites MeCys or MeSeCys, or through an as yet unidentified Se assimilation pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号