首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   807篇
  免费   90篇
  国内免费   25篇
  2023年   23篇
  2022年   23篇
  2021年   42篇
  2020年   37篇
  2019年   37篇
  2018年   37篇
  2017年   44篇
  2016年   25篇
  2015年   32篇
  2014年   32篇
  2013年   65篇
  2012年   22篇
  2011年   29篇
  2010年   30篇
  2009年   33篇
  2008年   34篇
  2007年   30篇
  2006年   28篇
  2005年   23篇
  2004年   37篇
  2003年   24篇
  2002年   15篇
  2001年   13篇
  2000年   20篇
  1999年   21篇
  1998年   14篇
  1997年   6篇
  1996年   14篇
  1995年   16篇
  1994年   18篇
  1993年   9篇
  1992年   12篇
  1991年   12篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1977年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有922条查询结果,搜索用时 15 毫秒
781.
Abstract Vitellogenin (Vg) is an egg yolk protein that is produced primarily in the fat body of most female insects. In the advanced social structure of eusocial honeybees, the presence of the queen inhibits egg maturation in the workers’ ovaries. However in the stingless bee Melipona quadrifasciata, the workers always develop ovaries and lay a certain amount of eggs while provisioning the brood cells with larval food during what is known as the worker nurse phase. The present work is a comparative study of the presence of Vg in homogenates of the fat bodies and ovaries of the nurse workers, and the virgin and physogastric queens of M. quadrifasciata. The presence of Vg was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting using Apis mellifera anti‐egg antibody. Vg was not detected in the fat bodies or ovaries of the workers, but it was found in the ovaries of virgin and physogastric queens and in the fat body of physogastric queens. The results are discussed, taking into account the reproductive state of the individuals and the other possible roles of Vg, such as a storage protein for metoabolism of other organs.  相似文献   
782.
Although pollinators are thought to select on flower colour, few studies have experimentally decoupled effects of colour from correlated traits on pollinator visitation and pollen transfer. We combined selection analysis and phenotypic manipulations to measure the effect of petal colour on visitation and pollen export at two spatial scales in Wahlenbergia albomarginata. This species is representative of many New Zealand alpine herbs that have secondarily evolved white or pale flowers. The major pollinators, solitary bees, exerted phenotypic selection on flower size but not colour, quantified by bee vision. When presented with manipulated flowers, bees visited flowers painted blue to resemble a congener over white flowers in large, but not small, experimental arrays. Pollen export was higher for blue flowers in large arrays. Pollinator preference does not explain the pale colouration of W. albomarginata, as commonly hypothesized. Absence of bright blue could be driven instead by indirect selection of correlated characters.  相似文献   
783.
对来自安徽的意大利蜜蜂、尼日利亚非洲蜂与意大利蜂蜂王与非洲蜂雄蜂杂交所选育的杂交二代3个群体,利用形态学和微卫星DNA多态性相结合的方法进行研究。对安徽意大利蜜蜂、尼日利亚非洲蜂及其杂交二代形态特征进行测量结果是,吻长平均值分别为6.09、5.23 mm和5.53 mm,右前翅宽平均值分别为3.35、8.42 mm和8.65 mm,前翅面积平均值分别为15.18、13.23 mm2和13.95 mm2,前翅肘脉a平均值分别为0.59、0.49 mm和0.55 mm,第3+4背板长平均值分别为4.38、3.80mm和4.04 mm,差异极显著(P≤0.01)。右前翅长平均值分别为9.06、3.12 mm和3.22 mm,差异显著(0.010.05)。对3个群体进行多态检测,共检测到121个等位基因,平均每个位点的等位基因数为8.067,单个位点的等位基因数从3到13不等,表明3个群体都具有较丰富的遗传多样性。3个群体期望杂合度为0.5801至0.8526,平均期望杂合度为0.7591(0.0762)。所有位点的多态信息含量为0.5158至0.8363,平均多态信息含量为0.7283(0.0879)。3个群体的平均期望杂合度,意大利蜜蜂为0.6208,非洲蜂为0.5780,杂交二代为0.7451,非洲蜜蜂和安徽意蜂与其杂交二代之间差异均极显著,安徽意蜂与非洲蜜蜂之间差异不显著。3个群体都具有较高的杂合度和较丰富的多态性,其中杂交二代最高。意大利蜜蜂和尼日利亚非洲蜂平均遗传分化系数FST为0.0436,两个群体间的分化程度极显著,8个位点都极显著地贡献于这一结果。群体内的近交系数FIS较低,为0.070,15个位点显著地贡献于这一结果,表明非洲蜂与意大利蜜蜂的近交较少。非洲蜂和意大利蜜蜂遗传距离为0.725,Nm值为0.213,两个群体间表现出较远的遗传距离,而且彼此之间基因流动较少。安徽意蜂和非洲蜂群体间长期存在地理隔离,两个群体间形态指标差异显著,杂交二代群体形态指标低于安徽意蜂,但比尼日利亚非洲蜂均有不同程度的提高,在形态特征上体现了杂交优势,两群体杂交二代等位基因数、基因杂合度及多态信息含量等遗传多样性指标均有显著提高。  相似文献   
784.
In focusing on how organisms' generalizable functional properties (traits) interact mechanistically with environments across spatial scales and levels of biological organization, trait‐based approaches provide a powerful framework for attaining synthesis, generality and prediction. Trait‐based research has considerably improved understanding of the assembly, structure and functioning of plant communities. Further advances in ecology may be achieved by exploring the trait–environment relationships of non‐sessile, heterotrophic organisms such as terrestrial arthropods, which are geographically ubiquitous, ecologically diverse, and often important functional components of ecosystems. Trait‐based studies and trait databases have recently been compiled for groups such as ants, bees, beetles, butterflies, spiders and many others; however, the explicit justification, conceptual framework, and primary‐evidence base for the burgeoning field of ‘terrestrial arthropod trait‐based ecology’ have not been well established. Consequently, there is some confusion over the scope and relevance of this field, as well as a tendency for studies to overlook important assumptions of the trait‐based approach. Here we aim to provide a broad and accessible overview of the trait‐based ecology of terrestrial arthropods. We first define and illustrate foundational concepts in trait‐based ecology with respect to terrestrial arthropods, and justify the application of trait‐based approaches to the study of their ecology. Next, we review studies in community ecology where trait‐based approaches have been used to elucidate how assembly processes for terrestrial arthropod communities are influenced by niche filtering along environmental gradients (e.g. climatic, structural, and land‐use gradients) and by abiotic and biotic disturbances (e.g. fire, floods, and biological invasions). We also review studies in ecosystem ecology where trait‐based approaches have been used to investigate biodiversity–ecosystem function relationships: how the functional diversity of arthropod communities relates to a host of ecosystem functions and services that they mediate, such as decomposition, pollination and predation. We then suggest how future work can address fundamental assumptions and limitations by investigating trait functionality and the effects of intraspecific variation, assessing the potential for sampling methods to bias the traits and trait values observed, and enhancing the quality and consolidation of trait information in databases. A roadmap to guide observational trait‐based studies is also presented. Lastly, we highlight new areas where trait‐based studies on terrestrial arthropods are well positioned to advance ecological understanding and application. These include examining the roles of competitive, non‐competitive and (multi‐)trophic interactions in shaping coexistence, and macro‐scaling trait–environment relationships to explain and predict patterns in biodiversity and ecosystem functions across space and time. We hope this review will spur and guide future applications of the trait‐based framework to advance ecological insights from the most diverse eukaryotic organisms on Earth.  相似文献   
785.
Insect immune proteins and peptides induced during bacterial infection are predominantly synthesized by the fat body or by haemocytes and released into the hemolymph. However, tissues other than the "immune-related" ones are thought to play a role in bacteria-induced responses. Here we report a proteomic study of honey bee heads designed to identify the proteins that are differentially expressed after bacterial challenge in a major body segment not directly involved in insect immunity. The list of identified proteins includes structural proteins, an olfactory protein, proteins involved in signal transduction, energy housekeeping, and stress responses, and also two major royal jelly proteins. This study revealed a number of bacteria-induced responses in insect head tissue directly related to typical functions of the head, such as exocrine secretion, memory, and senses in general.  相似文献   
786.
787.
Honey bees and wild bees provide critical pollination services to agricultural ecosystems; however, the relative contributions of different bee taxa are not well understood. The natural habitats surrounding farmland support food and nesting resources for wild bees and therefore play an important role in the maintenance of crop pollination. In this study, we selected Cucurbita pepo L. (squash) as a model crop to investigate the relative importance of honey bees and bumblebees in pollinating the crop. Thirteen fields, which were surrounded by a gradient of natural habitat, were investigated on the Yunnan‐Guizhou Plateau in China. We measured the visit densities of honey bees and bumblebees, the number of pollen grains deposited in a single visit by the two bee taxa, as well as the overall pollen grains deposited on stigmas during a flowering day, and then used Bayesian inference to decouple the pollen grains deposited by either the honey bees or the bumblebees. Compared with honey bees, bumblebees deposited a higher number of pollen grains on stigmas in a single visit, but had a lower visit density than honey bees. Meanwhile, the bumblebee visit density increased along the proportion of natural habitat, while the honey bee visit density was not affected by the surrounding natural habitat. Data simulations using Bayesian inference showed that on a flowering day, the number of pollen grains deposited by bumblebees increased with the proportion of natural habitat in the surrounding landscape, but the number of pollen grains deposited by honey bees did not. Moreover, the total numbers of pollen grains deposited by honey bees or bumblebees alone were all below 2000 (the critical level to satisfy the pollination requirement of this crop). Pollen calculations demonstrated that the number of pollen grains deposited by the two bee taxa was greater than 2000 in fields surrounded by more than 13% natural habitat (grasslands and forests). The results revealed that bumblebees ensured C. pepo pollination in combination with honey bees in the highland agricultural ecosystems.  相似文献   
788.
Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter‐Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig.  1 ). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy‐makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.
Figure 1 Open in figure viewer PowerPoint Left, a Nomada sp male; right, an Andrena sp male. Caption Left, a Nomada sp male; right, an Andrena sp male.

Introduction

Pollinators play an important functional role in most terrestrial ecosystems and provide a key ecosystem service (Ashman et al. 2004 ). Insects, particularly bees, are the primary pollinators for the majority of the world's angiosperms (Ollerton et al. 2012 ). Without this service, many interconnected species and processes functioning within both wild and agricultural ecosystems could collapse (Kearns et al. 1998 ). Brassica napus (oilseed rape, OSR) represents the most widespread entomophilous crop in France with almost 1.5 Mha in 2010 (FAOSTAT August 10th, 2012). Results differ between varieties, but even though it seems that OSR produces 70% of its fruits through self‐pollination (Downey et al. 1970 in Mesquida and Renard 1981 ), native bees are also known to contribute to its pollination (Morandin and Winston 2005 ; Jauker et al. 2012 ). Bee pollination leads to improved yields (Steffan‐Dewenter 2003b ; Sabbahi et al. 2005 ) and to a shorter blooming period (Sabbahi et al. 2006 ), thus increasing the crop's market value (Bommarco et al. 2012 ). The most widely used species in crop pollination is the honeybee (Apis mellifera L) which is sometimes assumed to be sufficient for worldwide crop pollination (Aebi and Neumann 2011 ). However, this assertion has been questioned by different authors (Ollerton et al. 2012 ), and several studies show that many wild bees are also efficient pollinators of crops (Klein et al. 2007 ; Winfree et al. 2008 ; Breeze et al. 2011 ). Recently, Garibaldi et al. ( 2013 ) found positive associations of fruit set with wild‐insect visits to flowers in 41 crop systems worldwide. They demonstrate that honeybees do not maximize pollination, nor can they fully replace the contributions of diverse, wild‐insect assemblages to fruit set for a broad range of crops and agricultural practices on all continents with farmland. Unfortunately, not only are honey bees declining due to a variety of different causes (vanEngelsdorp et al. 2009 ), wild bee populations are also dwindling (Potts et al. 2010 ). Their decline has been documented in two Western European countries (Britain and the Netherlands) by comparing data obtained before and after 1980 (Biesmeijer et al. 2006 ). These losses have mostly been attributed to the use of agrochemicals, the increase in monocultures, the loss of seminatural habitat and deforestation (Steffan‐Dewenter et al. 2002 ; Steffan‐Dewenter and Westphal 2008 ; Brittain and Potts 2011 ). Several studies have shown the importance of natural or seminatural habitats in sustaining pollinator populations or pollination services close to fruit crops (Steffan‐Dewenter 2003a ; Kremen et al. 2004 ; Greenleaf and Kremen 2006a ; Carvalheiro et al. 2010 ). Morandin and Winston ( 2006 ) presented a cost–benefit model that estimates profit in OSR agroecosystems with different proportions of uncultivated land. They calculated that yield and profit could be maximized with 30% of the land left uncultivated within 750 m of field edges. Other studies have demonstrated a negative impact of the distance from forests on pollination services or bee abundance and richness both in tropical ecosystems (De Marco and Coelho 2004 ; Blanche et al. 2006 ; Chacoff and Aizen 2006 ) and in temperate ecosystems (Hawkins 1965 ; Taki et al. 2007 ; Arthur et al. 2010 ; Watson et al. 2011 ). These studies all suggest that natural or seminatural habitats are important sources of pollinators, probably because they provide “partial habitats” (Westrich 1996 ) such as complementary mating, foraging, nesting, and nesting materials sites that bees need to complete their life cycle. In this study, we focused on the effect of distance to forest edge on bee assemblages in OSR ecosystems. Forest edges could provide one or more important partial habitats for different bee species in agricultural landscapes, in particular when associated with a mass‐flowering crop such as OSR (Le Feon et al. 2011 ). For example, the availability of untilled soil and dead branches might provide ground‐nesting and cavity‐nesting bee species with numerous nesting sites. Moreover, during spring at least, the understory and the forest edge can provide cover containing flowering plants and wild trees such as Prunus spp, Castanea sativa, or Salix spp and thereby allow bees to find alternative floral resources. During spring 2010 and 2011, in two areas in France, we examined wild bee abundance and taxa richness both along forest edges and inside OSR fields at different distances from the forest. Like other taxa, bees respond to environmental variables according to their biologic traits that determine access and requirements for nesting, mating, and forage resources, species mobility or physiological tolerance. Specifically, we hypothesized that (1) bee abundance, species richness, and composition of bee communities within the crop field are dependent on the distance from the forest edge (where complementary floral resources, nesting sites, shelters, etc. can be found) and on the orientation of the forest edge; (2) the identity of bees in the crop is related to their foraging range which we measured with the ITD (Inter‐Tegular distance); (3) the forest edge may be the nesting or mating sites for cavity‐nesting or ground‐nesting bees such as Osmia spp or Andrena spp which are important groups of potential early spring pollinators for OSR.  相似文献   
789.
790.
The European honey bee (Apis mellifera) is a highly valuable, semi-free-ranging managed agricultural species. While the number of managed hives has been increasing, declines in overwinter survival, and the onset of colony collapse disorder in 2006, precipitated a large amount of research on bees’ health in an effort to isolate the causative factors. A workshop was convened during which bee experts were introduced to a formal causal analysis approach to compare 39 candidate causes against specified criteria to evaluate their relationship to the reduced overwinter survivability observed since 2006 of commercial bees used in the California almond industry. Candidate causes were categorized as probable, possible, or unlikely; several candidate causes were categorized as indeterminate due to lack of information. Due to time limitations, a full causal analysis was not completed at the workshop. In this article, examples are provided to illustrate the process and provide preliminary findings, using three candidate causes. Varroa mites plus viruses were judged to be a “probable cause” of the reduced survival, while nutrient deficiency was judged to be a “possible cause.” Neonicotinoid pesticides were judged to be “unlikely” as the sole cause of this reduced survival, although they could possibly be a contributing factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号