首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   3篇
  国内免费   3篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有45条查询结果,搜索用时 50 毫秒
21.
Seed ontogeny of Adesmia bicolor and Adesmia latifolia was analysed using light microscopy and standard histological techniques. Fertilization was porogamic. Linear proembryonal tetrads were observed in A. bicolor. The robust elongated suspensors possessed specialized basal cells. The nucellar epidermis became endothelial. The free‐nuclear endosperm produced a micropylar, filamentous and ephemeral haustorium and a lateral sac‐like haustorium at the funicular side. The cellular endosperm was initiated from the micropylar zone after the cordiform embryo stage. It mostly disintegrated in mature seeds. The sclerified bilayered testa was derived from the outer ovular integument. Different astrosclereid arrangements beyond the lens in both Adesmia species may be related to the different habitats of the two species. The occurrence of both micropylar and lateral nuclear endosperm haustoria has so far not been reported in Fabaceae and is the most distinctive embryological character of Adesmieae. The taxonomic value of the mostly uniform morphology of the suspensor in the Adesmia species studied could also be relevant. The nature of seed endothelia in many Fabaceae requires accurate redetermination prior to taxonomic use. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 602–612.  相似文献   
22.
Parasitic plants in the Orobanchaceae invade host plant roots through root organs called haustoria. Parasite roots initiate haustorium development when exposed to specific secondary metabolites that are released into the rhizosphere by host plant roots. While molecular approaches are increasingly being taken to understand the genetic mechanism underlying these events, a limitation has been the lack of a transformation system for parasitic plants. Since the haustorium development occurs in roots of Orobanchaceae, root cultures may be suitable material for transient or stable transformation experiments. To this end, root cultures were obtained from explants, and subsequently calluses, from the hemiparasitic plant Triphysaria versicolor. The cultured roots retained their competence to form haustoria when exposed to host roots, host root exudates, or purified haustorium-inducing factors. The root culture haustoria invaded host roots and initiated a vascular continuity between the parasite and host roots. The ontogeny of haustoria development on root cultures was indistinguishable from that on seedlings roots. Root cultures should provide useful material for molecular studies of haustorium development.  相似文献   
23.
氨基寡糖素对黄瓜白粉病菌侵染的抑制作用*   总被引:8,自引:0,他引:8  
用透射电子显微镜,研究了寡聚糖类药剂中科6号(2%氨基寡糖素)处理黄瓜Cucumis sativus 植株叶片后对白粉病菌Sphaerotheca fuliginea侵染的抑制作用。超微结构观察表明,病菌发育受到明显抑制,表现为白粉菌菌丝细胞质凝聚,细胞器解体和细胞组织崩解;吸器内的原生质电子致密度加深,吸器畸形,吸器壁增厚,细胞器解体,最终吸器坏死。  相似文献   
24.
Cuscuta is a stem holoparasitic plant without leaves or roots, which develops a haustorium and sucks nutrients from host plants. The genus Cuscuta comprises about 200 species, many of which can cause severe problems for certain crops. The parasitic process in Cuscuta begins in finding and attaching to a host plant and then developing a haustorium. The process does not always require any chemical signal, but does require a light signal. Finding a host involves detecting the lower red light:far-red light ratio near a potential host plant by phytochrome. A contact signal is also necessary for haustorium induction. Apparently, cytokinin increase is downstream of the light and contact signal and is critical for haustorium induction. This pathway, however, appears to be slightly different from a standard pathway. The direct connection between Cuscuta and its host involves both the xylem and phloem, and mRNA and proteins can translocate. Several features indicate that Cuscuta is a useful model plant for parasite plant research as well as plant–plant interaction research. These include the simple anatomical structure and seedling development, no chemical requirement for haustorium induction, and the wide range of host plants.  相似文献   
25.
The Loranthaceae is the largest plant family with aerial branch parasites termed mistletoes. Three genera of Loranthaceae are terrestrial root parasites and the remaining 72 genera are aerial parasites. Several characters, including habit, haustorial type, germination pattern, pollen morphology, chromosome number, inflorescence morphology and flower merosity, fusion, symmetry and size, are considered to reflect evolutionary relationships within the family. Convergence is a common evolutionary pattern and can confound interpretations of evolution. We investigated character evolution by mapping character states onto a phylogenetic tree based on the nuclear ITS and chloroplast trnL–trnF regions. Convergences in form were found in several characters, including habit, haustorial type, flower symmetry and merosity. These convergences typically correspond to ecological parameters such as pollination syndrome or stresses associated with the canopy habit. Other characters such as chromosome number and germination pattern illustrate divergent evolution among clades.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 101–113.  相似文献   
26.
对苏铁(Cycas revoluta Thunb.)种子的胚和胚乳组织进行了解剖研究。结果表明:苏铁种子为有胚乳种子,兼有胚乳和外胚乳,成熟时具直立型胚。胚乳的表层细胞含有角蜡质,胞核大,不含淀粉粒;中层细胞胞核明显;内层细胞胞核不明显,富含淀粉颗粒,淀粉粒单脐点明显。胚孔端的胚乳内陷成一凹槽,似贮藏窖。成熟的子叶胚为倒生胚胎,位于胚乳细胞解体后形成的囊腔中,子叶胚长度在胚乳中占到种子的1/3至2/3,已达到生理成熟阶段。双子叶直立,半合生。胚状体基部呈喙状突起,喙状突起下端连着一根肠叠着的丝状吸器,吸器基部连着一个小气囊。胚芽由顶端分生组织和数枚真叶组成,此时真叶已具羽状叶原基和绒毛原始体。在胚状体中发现有长管细胞及螺纹加厚的导管,在子叶中脉有数条并列的螺环纹导管。  相似文献   
27.
In this study, we focused on compatible interactions between Peronospora parasitica isolate Emoy‐2 and wild‐type (Oy‐0) and mutant (Ws‐eds1) Arabidopsis thaliana accessions by using light and transmission electron microscopy (TEM). Light microscopy of compatible interactions revealed that conidia germinated and penetrated through the anticlinal cell walls of two epidermal cells. Rapid spreading of the hyphal growth with formation of numerous haustoria within the mesophyll cells was subsequently followed by profuse sporulation in the absence of host cell necrosis on both wild‐type and mutant accessions. TEM observations revealed that coenocytic intercellular hyphae ramified and spread intercellularly throughout the host tissue forming several haustoria in host mesophyll cells. Intracellular haustoria were lobed with the diameter of 6–7 μm. Each haustorium was connected to intercellular hyphae in the absence of apparent haustorial neck. The cytoplasm of the haustorium included the organelles characteristic of the pathogen. Callose‐like deposits were frequently observed at sites of penetration around the proximal region of the haustorial neck. Apart from a few callose ensheatments, no obvious response was observed in host cells following formation of haustoria. Most of mesophyll cells contained normal haustoria and the host cytoplasm displayed a high degree of structural integrity. Absence of host cell wall alteration and cell death in penetrated host cell of both accessions suggest that the pathogen exerts considerable control over basic cellular processes and in this respect, response to this biotroph oomycete differs considerably from responses to other pathogens such as necrotrophs.  相似文献   
28.
20 0 3年在沈阳的三裂叶豚草 (AmbrosiatrifidaL .)上发现了苍耳柄锈菌三裂叶豚草专化型 (PucciniaxanthiiSchwein .f.sp .ambrosia trifidaeS .W .T .Batra) ,这是在我国三裂叶豚草上发现的一种新病菌。试验采用扫描电镜和透射电镜对该锈菌的冬孢子和吸器的形态结构进行了观察。  相似文献   
29.
Breeding for resistance to Striga in maize (Zea mays), with paucity of donor source and known mechanisms of resistance, has been challenging. Here, post-attachment development of S. hermonthica was monitored on two maize inbreds selected for field resistance and susceptibility reactions to Striga at the International Institute of Tropical Agriculture. Haustorial invasion of the parasite into roots of these inbreds was examined histologically. Morphological differences were observed between roots of the susceptible and the resistant inbreds. The resistant maize had fewer Striga attachments, delayed parasitic development and higher mortality of attached parasites compared with the susceptible inbred. Striga on the susceptible inbred usually penetrated the xylem and showed substantial internal haustorial development. Haustorial ingress on the resistant inbred was often stopped at the endodermis. Parasites able to reach resistant host xylem vessels showed diminished haustorial development relative to those invading susceptible roots. These results suggest that the resistant inbred expresses a developmental barrier and incompatible response against Striga parasitism.  相似文献   
30.
西瓜胚乳吸器的发育及ATP酶的超微细胞化学定位   总被引:3,自引:0,他引:3  
王秀玲  张恒悦等 《西北植物学报》2001,21(2):301-305,T013,T014
报道了西瓜(Citrullus lanatus)胚乳吸器发育过程,并对胚乳吸器细胞中的ATP酶进行了超微细胞化学定位,球形胚早期,胚囊合点端的壁伸长发育成一管状胚乳吸器,进而吸器靠近乳本体端膨大为囊状,球形胚晚期吸器自珠孔端向合点端逐渐细胞化,胚分化出子叶时,胚乳吸器自合点端向珠孔端退化,在刚形成的胚乳吸器细胞中,ATP酶活性反应主要分布在细胞的核膜,内质网上,胞间连丝和吸器细胞壁内的小球状物上也有较强的ATP酶活性反应;在开始退化的吸器细胞中,核膜上的ATP酶性的反应减弱较早,内质网稍晚,进一步退化的胚乳吸器细胞中,ATP酶主要集中分布在细胞壁,细胞间隙内,核上几乎没有ATP酶性反应,内质网上仅有微弱的ATP酶反应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号