首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   5篇
  国内免费   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
21.
目的:研究miR-143调控人骨髓间充质干细胞(hMSCs)成脂分化的新机理。方法:将NC、miR-143、siPTN、miR-143i转入hMSCs中,诱导成脂分化,检测miR-143对成脂分化的影响。经miRNA靶点分析软件Findtar预测出miR-143在人多效生长因子(hPTN)的3’-UTR端有靶点。RT-PCR、western blot研究miR-143与hPTN的关系。构建hPTN 3’-UTR靶位点荧光检测质粒prltk-PTN及其突变质粒prltk-m,验证miR-143是否在人PTN 3’-UTR上有靶点。结果:miR-143促进hMSCs成脂分化,抑制hPTN的mRNA和蛋白表达水平。荧光报告实验证实miR-143在人PTN的3’-UTR上有靶点。结论:miR-143通过与hPTN3’-UTR上的靶点相结合而抑制hPTN的表达,从而促进了hMSCs成脂分化进程。  相似文献   
22.
Gangliosides are complex glycosphingolipids that are the major component of cytoplasmic cell membranes, and play a role in the control of biological processes. Human mesenchymal stem cells (hMSCs) have received considerable attention as alternative sources of adult stem cells because of their potential to differentiate into multiple cell lineages. In this study, we focus on various functional roles of gangliosides in the differentiation of hMSCs into osteoblasts or neuronal cells. A relationship between gangliosides and epidermal growth factor receptor (EGFR) activation during osteoblastic differentiation of hMSCs was observed, and the gangliosides may play a major role in the regulation of the differentiation. The roles of gangliosides in osteoblast differentiation are dependent on the origin of hMSCs. The reduction of ganglioside biosynthesis inhibited the neuronal differentiation of hMSCs during an early stage of the differentiation process, and the ganglioside expression can be used as a marker for the identification of neuronal differentiation from hMSCs. [BMB Reports 2013; 46(11): 527-532]  相似文献   
23.
24.
目的:探究氯化锂(Lithium chlorid,LiCl)对人骨髓间充质干细胞(human Mesenchymal Stem Cells,hMSCs)迁移的影响。方法:采用划痕试验、Transwell chamber等方法,在梯度浓度LiCl作用下,观察对hMSCs迁移效果的影响并进行分析。结果:1划痕试验显示hMSCs在梯度浓度LiCl作用下,细胞迁移距离逐渐减少,差异具有统计学意义(P0.05)。2 Transwell chamber实验显示hMSCs在梯度浓度LiCl作用下,穿梭至小室下方的细胞逐渐减少,锂剂作用组迁移细胞数差异与对照组比较有统计学意义(P0.05)。结论:LiCl可抑制hMSCs的迁移且呈浓度依赖性。  相似文献   
25.
为了研究冲击波(SW)诱导人骨髓基质细胞(hMSCs)在动物体内成骨作用,根据前期工作结果,应用适宜能量冲击波(10kV,500次)处理体外培养的hMSCs,将SW组和对照组hMSCs与羟基磷灰石(HA)载体复合后体外培养2周,应用扫描电镜(SEM)检测细胞在载体表面的生长情况.将hMSCs-HA载体复合体植入裸鼠皮下,分别于术后4周、8周取材进行组织学、四环素荧光标记、SEM观察、碱性磷酸酶测定、RT-PCR检测骨钙素mRNA表达.结果表明,SW组及对照组细胞与HA载体体外复合后生长良好,且SW组细胞分泌较多的细胞基质;细胞载体复合体植入动物体内后,SW组载体表面有类骨组织形成,而对照组HA载体表面无骨组织形成;SW组与对照组的hMSCs-HA载体复合体碱性磷酸酶表达有显著性差异(P<0.01);SW组hMSCs-HA载体复合体术后4周与8周表达骨钙素mRNA,而对照组则无表达.提示hMSCs经适宜能量冲击波作用后与HA载体复合植入裸鼠体内具有成骨作用,适宜能量的冲击波作为一种新的促进hMSCs成骨分化的方法,可应用于组织工程领域.  相似文献   
26.
27.
Prevention and management of obesity through dietary modification is one of the top way to trim down its consequences. Development of adipose tissue requires the differentiation of less specialized cells, such as human mesenchymal stem cells (hMSCs), into adipocytes. Since food constituents play a major role in the cell differentiation and proliferation, we sought to determine if various extracts of Cucurbita ficifolia (C. ficifolia), could affect the adipogenic differentiation of hMSCs. Flow cytometry analysis with quantitative and qualitative Nile red, and quantitative PCR methods were employed to evaluate the C. ficifolia effect on hMSCs adipogenesis. Results revealed that, chloroform extract exhibits significant adipogenic inhibition than that of hexane and methanol extracts. Chloroform extract treated cells display the down-regulation of ADIPOQ, FABP4, PPARGC1A, CEBPB & LPL and up-regulation of ACACB & CEBPA genes. Further, various phytoconstituents present in the chloroform extract of C. ficifolia were analyzed though LC-MS and GC-MS. Our results indicates that chloroform extract of C. ficifolia might be used as a food supplement to control obesity and its related consequences.  相似文献   
28.
29.
Human adult bone marrow-derived skeletal stem cells a.k.a mesenchymal stem cells (hMSCs) have been shown to be precursors of several different cellular lineages, including osteoblast, chondrocyte, myoblast, adipocyte, and fibroblast. Several studies have shown that cooperation between transforming growth factor β (TGF-β) and Wnt/β-catenin signaling pathways plays a role in controlling certain developmental events and diseases. Our previous data showed that agents like TGF-β, cooperation with Wnt signaling, promote chondrocyte differentiation at the expense of adipocyte differentiation in hMSCs. In this study, we tested mechanisms by which TGF-β activation of β-catenin signaling pathway and whether these pathways interact during osteoblast differentiation of hMSCs. With selective small chemical kinase inhibitors, we demonstrated that TGF-β1 requires TGF-β type I receptor ALK-5, Smad3, phosphoinositide 3-kinases (PI3K), and protein kinase A (PKA) to stabilize β-catenin, and needs ALK-5, PKA, and JNK to inhibit osteoblastogenesis in hMSCs. Knockdown of β-catenin with siRNA stimulated alkaline phosphatase activity and antagonized the inhibitory effects of TGF-β1 on bone sialoprotein (BSP) expression, suggested that TGF-β1 cooperated with β-catenin signaling in inhibitory of osteoblastogenesis in hMSCs. In summary, TGF-β1 activates β-catenin signaling pathway via ALK-5, Smad3, PKA, and PI3K pathways, and modulates osteoblastogenesis via ALK5, PKA, and JNK pathways in hMSCs; the interaction between TGF-β and β-catenin signaling supports the view that β-catenin signaling is a mediator of TGF-β's effects on osteoblast differentiation of hMSCs.  相似文献   
30.
The use of transplanted adipose tissue to repair crucial defects is clinically interesting for surgical reconstruction. Terminally differentiated adipocytes are utilized to promote the healthy regeneration of defective tissue. Use of differentiated mesenchymal stem cells, capable of differentiation into adipocytes, is advantageous because of their regenerative properties. Conventionally, the differentiation of hMSCs toward adipocytes occurs through chemical stimulation. We designed a microfluidic system, consisting of plastic tubing and a syringe pump, to create an environment of shear to accelerate this differentiation process. This system employed a flow rate equivalent to the accelerated flow rates found within the arterial system in order to promote and activate intracellular and extracellular proteins associated with the adipogenic lineage. Confirmation of sustained viability following shear exposure was obtained using a fluorescent live‐dead assay. Visualization of intracellular lipid accumulation was achieved via Oil Red O staining. When placed into culture, shear stimulated hMSCs were further induced toward brown adipose tissue, as evidenced by a greater quantity of lipid triglycerides, relative to unstimulated hMSCs. qRT‐PCR analysis validated the phenotypic changes observed when the hMSCs were later cultured in adipogenic differentiation media. Additionally, increased fold change for adipogenic markers such as LPL1, CFL1, and SSP1 were observed as a result of shear stimulation. The significance of this work lies in the demonstration that transient fluid shear exposure of hMSCs in suspension can influence differentiation into adipocytes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:440–446, 2016  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号