首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   6篇
  2018年   4篇
  2017年   8篇
  2016年   1篇
  2015年   2篇
  2014年   18篇
  2013年   10篇
  2012年   5篇
  2011年   22篇
  2010年   4篇
  2009年   6篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
排序方式: 共有101条查询结果,搜索用时 62 毫秒
71.
Osterberg F  Aqvist J 《FEBS letters》2005,579(13):2939-2944
Binding of blockers to the human voltage-gated hERG potassium channel is studied using a combination of homology modelling, automated docking calculations and molecular dynamics simulations, where binding affinities are evaluated using the linear interaction energy method. A homology model was constructed based on the available crystal structure of the bacterial KvAP channel and the affinities of a series of sertindole analogues predicted using this model. The calculations reproduce the relative binding affinities of these compounds very well and indicate that both polar interactions near the intracellular opening of the selectivity filter as well as hydrophobic complementarity in the region around F656 are important for blocker binding. These results are consistent with recent alanine scanning mutation experiments on the blocking of the hERG channel by other compounds.  相似文献   
72.
BACKGROUND: The antiepileptic drug phenytoin (PHT) is a human and animal teratogen. The teratogenicity has been linked to PHT-induced embryonic cardiac arrhythmia and hypoxic damage during a period when regulation of embryonic heart rhythm is highly dependent on a specific K(+) ion current (I(Kr)). PHT has been shown to inhibit I(Kr). The aims of this study were to investigate whether teratogenic doses cause embryonic hypoxia during and after the I(Kr) susceptible period and to further characterize PHT effects on embryonic heart rhythm. METHODS: Pregnant C57BL mice were administered the hypoxia marker pimonidazole followed by PHT or saline (controls) on GD 10 or GD 15. The embryos were fixed and sectioned, and the immunostained sections were analyzed with a computer assisted image analysis. Effects of PHT (0-250 microM) on heart rhythm in GD 10 embryos cultured in vitro were videotaped and then analyzed by using a digitalization technique. RESULTS: PHT dose-dependently increased the hypoxia staining (6- and 11-fold after maternal dosing of 100 and 150 mg/kg, respectively) during the period I(Kr) is expressed and functional (GD 10). In contrast, there were no differences between the PHT doses in hypoxia staining, and much less pronounced hypoxia after this period (GD 15). With increasing PHT concentrations, increased length of the interval (bradycardia) and large variations in length between individual heartbeats (arrhythmia) were recorded. CONCLUSIONS: PHT induced bradycardia/arrhythmia and severe embryonic hypoxia during the I(Kr) susceptible period, supporting the idea of an I(Kr)-arrhythmia-hypoxia-related teratogenic mechanism.  相似文献   
73.
A series of inhibitors of Autotaxin (ATX) has been developed using the binding mode of known inhibitor, PF-8380, as a template. Replacement of the benzoxazolone with a triazole zinc-binding motif reduced crystallinity and improved solubility relative to PF-8380. Modification of the linker region removed hERG activity and led to compound 12 – a selective, high affinity, orally-bioavailable inhibitor of ATX. Compound 12 concentration-dependently inhibits autotaxin and formation of LPA in vivo, as shown in pharmacokinetic-pharmacodynamic experiments.  相似文献   
74.
SAR in the previously described spirocyclic ROMK inhibitor series was further evolved from lead 4 by modification of the spirocyclic core and identification of novel right-side pharmacophores. In this process, it was discovered that the spiropyrrolidinone core with the carbonyl group α to the spirocenter was preferred for potent ROMK activity. Efforts aimed at decreasing hERG affinity within the series led to the discovery of multiple novel right-hand pharmacophores including 3-methoxythiadiazole, 2-methoxypyrimidine, and pyridazinone. The most promising candidate is pyridazinone analog 32 that showed an improved functional hERG/ROMK potency ratio and preclinical PK profile. In vivo evaluation of 32 demonstrated blood pressure lowering effects in the spontaneously hypertensive rat model.  相似文献   
75.
The emergence of multidrug-resistant bacterial and fungal strains poses a threat to human health that requires the design and synthesis of new classes of antimicrobial agents. We evaluated bis(N-amidinohydrazones) and N-(amidino)-N′-aryl-bishydrazones for their antibacterial and antifungal activities against panels of Gram-positive/Gram-negative bacteria as well as fungi. We investigated their potential to develop resistance against both bacteria and fungi by a multi-step resistance-selection method, explored their potential to induce the production of reactive oxygen species, and assessed their toxicity. In summary, we found that these compounds exhibited broad-spectrum antibacterial and antifungal activities against most of the tested strains with minimum inhibitory concentration (MIC) values ranging from <0.5 to >500 μM against bacteria and 1.0 to >31.3 μg/mL against fungi; and in most cases, they exhibited either superior or similar antimicrobial activity compared to those of the standard drugs used in the clinic. We also observed minimal emergence of drug resistance to these newly synthesized compounds by bacteria and fungi even after 15 passages, and we found weak to moderate inhibition of the human Ether-à-go-go-related gene (hERG) channel with acceptable IC50 values ranging from 1.12 to 3.29 μM. Overall, these studies show that bis(N-amidinohydrazones) and N-(amidino)-N′-aryl-bishydrazones are potentially promising scaffolds for the discovery of novel antibacterial and antifungal agents.  相似文献   
76.
Bedaquiline is a new drug of the diarylquinoline class that has proven to be clinically effective against drug-resistant tuberculosis, but has a cardiac liability (prolongation of the QT interval) due to its potent inhibition of the cardiac potassium channel protein hERG. Bedaquiline is highly lipophilic and has an extremely long terminal half-life, so has the potential for more-than-desired accumulation in tissues during the relatively long treatment durations required to cure TB. The present work is part of a program that seeks to identify a diarylquinoline that is as potent as bedaquiline against Mycobacterium tuberculosis, with lower lipophilicity, higher clearance, and lower risk for QT prolongation. Previous work led to the identification of compounds with greatly-reduced lipophilicity compounds that retain good anti-tubercular activity in vitro and in mouse models of TB, but has not addressed the hERG blockade. We now present compounds where the C-unit naphthalene is replaced by a 3,5-dialkoxy-4-pyridyl, demonstrate more potent in vitro and in vivo anti-tubercular activity, with greatly attenuated hERG blockade. Two examples of this series are in preclinical development.  相似文献   
77.
The first example of a new sub-family of toxins (alpha-KTx20.1) from the scorpion Tityus trivittatus was purified, sequenced and characterized physiologically. It has 29 amino acid residues, three disulfide bridges assumed to adopt the cysteine-stabilized alpha/beta scaffold with a pI value of 8.98. The sequence identities with all the other known alpha-KTx are less than 40%. Its effects were verified using seven different cloned K(+) channels (vertebrate Kv1.1-1.5, Shaker IR and hERG) expressed in Xenopus leavis oocytes. The toxin-induced effects show large differences among the different K(+) channels and a preference towards Kv1.3 (EC50=7.9+/-1.4 nM).  相似文献   
78.
We recently reported gating currents recorded from hERG channels expressed in mammalian TSA cells and assessed the kinetics at different voltages. We detected 2 distinct components of charge movement with the bulk of the charge being carried by a slower component. Here we compare our findings in TSA cells with recordings made from oocytes using the Cut Open Vaseline Gap clamp (COVG) and go on to directly compare activation of gating charge and ionic currents at 0 and +60 mV. The data show that gating charge saturates and moves more rapidly than ionic current activates suggesting a transition downstream from the movement of the bulk of gating charge is rate limiting for channel opening.  相似文献   
79.
Potassium channels encoded by the human ether-à-go-go-related gene (hERG) contribute to cardiac repolarization as a result of their characteristic gating properties. The hERG channel N terminus acts as a crucial determinant in gating. It is also known that the S4-S5 linker couples the voltage-sensing machinery to the channel gate. Moreover, this linker has been repeatedly proposed as an interaction site for the distal portion of the N terminus controlling channel gating, but direct evidence for such an interaction is still lacking. In this study, we used disulfide bond formation between pairs of engineered cysteines to demonstrate the close proximity between the beginning of the N terminus and the S4-S5 linker. Currents from channels with introduced cysteines were rapidly and strongly attenuated by an oxidizing agent, this effect being maximal for cysteine pairs located around amino acids 3 and 542 of the hERG sequence. The state-dependent modification of the double-mutant channels, but not the single-cysteine mutants, and the ability to readily reverse modification with the reducing agent dithiothreitol indicate that a disulfide bond is formed under oxidizing conditions, locking the channels in a non-conducting state. We conclude that physical interactions between the N-terminal-most segment of the N terminus and the S4-S5 linker constitute an essential component of the hERG gating machinery, thus providing a molecular basis for previous data and indicating an important contribution of these cytoplasmic domains in controlling its unusual gating and hence determining its physiological role in setting the electrical behavior of cardiac and other cell types.  相似文献   
80.
Extracellular acidosis occurs in the heart during myocardial ischemia and can lead to dangerous arrhythmias. Potassium channels encoded by hERG (human ether-à-go-go-related gene) mediate the cardiac rapid delayed rectifier K+ current (IKr), and impaired hERG function can exacerbate arrhythmia risk. Nearly all electrophysiological investigations of hERG have centred on the hERG1a isoform, although native IKr channels may be comprised of hERG1a and hERG1b, which has a unique shorter N-terminus. This study has characterised for the first time the effects of extracellular acidosis (an extracellular pH decrease from 7.4 to 6.3) on hERG channels incorporating the hERG1b isoform. Acidosis inhibited hERG1b current amplitude to a significantly greater extent than that of hERG1a, with intermediate effects on coexpressed hERG1a/1b. IhERG tail deactivation was accelerated by acidosis for both isoforms. hERG1a/1b activation was positively voltage-shifted by acidosis, and the fully-activated current–voltage relation was reduced in amplitude and right-shifted (by ∼10 mV). Peak IhERG1a/1b during both ventricular and atrial action potentials was both suppressed and positively voltage-shifted by acidosis. Differential expression of hERG isoforms may contribute to regional differences in IKr in the heart. Therefore inhibitory effects of acidosis on IKr could also differ regionally, depending on the relative expression levels of hERG1a and 1b, thereby increasing dispersion of repolarization and arrhythmia risk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号