首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46248篇
  免费   3206篇
  国内免费   3315篇
  2024年   76篇
  2023年   644篇
  2022年   761篇
  2021年   1399篇
  2020年   1585篇
  2019年   1994篇
  2018年   1648篇
  2017年   1253篇
  2016年   1235篇
  2015年   1498篇
  2014年   2483篇
  2013年   3036篇
  2012年   1842篇
  2011年   2158篇
  2010年   1725篇
  2009年   2079篇
  2008年   2135篇
  2007年   2291篇
  2006年   2054篇
  2005年   1851篇
  2004年   1585篇
  2003年   1455篇
  2002年   1431篇
  2001年   1164篇
  2000年   1004篇
  1999年   993篇
  1998年   985篇
  1997年   840篇
  1996年   902篇
  1995年   781篇
  1994年   702篇
  1993年   723篇
  1992年   680篇
  1991年   693篇
  1990年   555篇
  1989年   450篇
  1988年   469篇
  1987年   388篇
  1986年   373篇
  1985年   423篇
  1984年   420篇
  1983年   254篇
  1982年   355篇
  1981年   306篇
  1980年   276篇
  1979年   184篇
  1978年   172篇
  1977年   110篇
  1976年   94篇
  1974年   60篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Abstract. Vegetation and its correlation with environment has been traditionally studied at a single scale of observation. If different ecological processes are dominant at different spatial and temporal scales, the results obtained from such observations will be specific to the single scale of observation employed and will lack generality. Consequently, it is important to assess whether the processes that determine community structure and function are similar at different scales, or whether, how rapidly, and under what circumstances the dominant processes change with scale of observation. Indeed, early work by Greig-Smith and associates (Greig-Smith 1952; Austin & Greig-Smith 1968; see Greig-Smith 1979; Kershaw & Looney 1985; Austin & Nicholls 1988) suggested that plant-plant interactions are typically important at small scales, but that the physical environment dominates at large scales. Using a gridded and mapped 6.6 ha portion of the Duke Forest on the North Carolina piedmont for a case study, we examined the importance of scale in vegetation studies by testing four hypotheses. First, we hypothesized that the correlation between vegetation composition and environment should increase with increasing grain (quadrat) size. Our results support this hypothesis. Second, we hypothesized that the environmental factors most highly correlated with species composition should be similar at all grain sizes within the 6.6-ha study area, and should be among the environmental factors strongly correlated with species composition over the much larger extent of the ca. 3500 ha Duke Forest. Our data are not consistent with either portion of this hypothesis. Third, we hypothesized that at the smaller grain sizes employed in this study (< 256 m2), the composition of the tree canopy should contribute significantly to the vegetation pattern in the under-story. Our results do not support this hypothesis. Finally, we predicted that with increased extent of sampling, the correlation between environment and vegetation should increase. Our data suggest the opposite may be true. This study confirms that results of vegetation analyses can depend greatly on the grain and extent of the samples employed. Whenever possible, sampling should include a variety of grain sizes and a carefully selected sample extent so as to ensure that the results obtained are robust. Application of the methods used here to a variety of vegetation types could lead to a better understanding of whether different ecological processes typically dominate at different spatial scales.  相似文献   
993.
Precipitation variability and heatwaves are expected to intensify over much of inland Australia under most projected climate change scenarios. This will undoubtedly have impacts on the biota of Australian dryland systems. However, accurate modelling of these impacts is presently impeded by a lack of empirical research on drought/heatwave effects on native arid flora and fauna. During the 2018–2021 Australian drought, many parts of the continent's inland experienced their hottest, driest period on record. Here, we present the results of a field survey in 2021 involving indigenous rangers, scientists and national parks staff who assessed plant dieback during this drought at Ulur u-Kata Tjut a National Park (UKTNP), central Australia. Spatially randomized quadrat sampling of eight common and culturally important plants indicated the following plant death rates across UKTNP (in order of drought susceptibility): desert myrtle (Aluta maisonneuvei subsp. maisonneuvei) (91%), yellow flame grevillea (Grevillea eriostachya) (79%), Maitland's wattle (Acacia maitlandii) (67%), waxy wattle (A. melleodora) (65%), soft spinifex grass (Triodia pungens) (53%), mulga (A. aneura) (42%), desert oak (Allocasuarina decaisneana) (22%) and quandong (Santalum acuminatum) (0%). The sampling also detected that seedling recruitment was absent or minimal for all plants except soft spinifex, while a generalized linear mixed model (GLMM) indicated two-way interactions among species, plant size and stand density as important predictors of drought survival of adult plants. A substantial loss of biodiversity has occurred at UKTNP during the recent drought, with likely drivers of widespread plant mortality being extreme multi-year rainfall deficit (2019 recorded the lowest-ever annual rainfall at UKTNP [27 mm]) and record high summer temperatures (December 2019 recorded the highest-ever temperature [47.1°C]). Our findings indicate that widespread plant death and extensive vegetation restructuring will occur across arid Australia if the severity and frequency of droughts increase under climate change.  相似文献   
994.
Summary The development and application of in vitro alternatives designed to reduce or replace the use of animals, or to lessen the distress and discomfort of laboratory animals, is a rapidly developing trend in toxicology. However, at present there is no formal administrative process to organize, coordinate, or evaluate validation activities. A framework capable of fostering the validation of new methods is essential for the effective transfer of new technologic developments from the research laboratory into practical use. This committee has identified four essential validation resources: chemical bank(s), cell and tissue banks, a data bank, and reference laboratories. The creation of a Scientific Advisory Board composed of experts in the various aspects and endpoints of toxicity testing, and representing the academic, industrial, and regulatory communities, is recommended. Test validation acceptance is contingent on broad buy-in by disparate groups in the scientific community—academics, industry, and government. This is best achieved by early and frequent communication among parties and agreement on common goals. It is hoped that the creation of a validation infrastructure composed of the elements described in this report will facilitate scientific acceptance and utilization of alternative methodologies and speed implementation of replacement, reduction, and refinement alternatives in toxicity testing.  相似文献   
995.
Summary Carcinogenesis is a lengthy process which eventually culminates in the transformed phenotype, cancer. However, much remains to be defined about the process of transformation. In vivo models for the study of the carcinogenic process present limitations because it is not possible to detect the premalignant stages in the animals. An in vitro model, on the other hand, facilitates the study of the carcinogenic process because it enables one to dissect out the crucial events required for carcinogenesis to occur. As carcinogenesis is believed to be a multistep process; initiation, promotion, and progression, a multistep, in vitro system has been devised in our laboratory to mimic each of these stages. We have previously shown the formation of “microtumors” in collagen gels, induced by 7,12-dimethylbenz(a)anthracene. In the present study the direct acting water soluble, mammary carcinogen,N-nitroso-N-methylurea (NMU) was used for tumorigenesis of mammary epithelial cells in culture. Mammary epithelial cells from virgin Sprague-Dawley rats were propagated and exposed to single or multiple doses of NMU while growing as a monolayer in glass petri dishes (initiation). Initiated cells were then plated into a collagen gel matrix culture. Prolonged growth in the collagen gels afforded for the progression of the transformed cells into discernable microtumors in the three-dimensional matrix of the collagen. The morphology of these “tumors” was determined by histologic sections of the gels. Fewer, if any, such structures existed in the untreated gels.  相似文献   
996.
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master ‘clock of age’ (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial – specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.  相似文献   
997.
Although conformity as a major driver for human cultural evolution is a well-accepted and intensely studied phenomenon, its importance for non-human animal culture has been largely overlooked until recently. This limited for decades the possibility of studying the roots of human culture. Here, we provide a historical review of the study of conformity in both humans and non-human animals. We identify gaps in knowledge and propose an evolutionary route towards the sophisticated cultural processes that characterize humanity. A landmark in the study of conformity is Solomon Asch's famous experiment on humans in 1955. By contrast, interest in conformity among evolutionary biologists has only become salient since the turn of the new millennium. A striking result of our review is that, although studies of conformity have examined many biological contexts, only one looked at mate choice. This is surprising because mate choice is probably the only context in which conformity has self-reinforcing advantages across generations. Within a metapopulation, i.e. a group of subpopulations connected by dispersing individuals, dispersers able to conform to the local preference for a given type of mate have a strong and multigenerational fitness advantage. This is because once females within one subpopulation locally show a bias for one type of males, immigrant females who do not conform to the local trend have sons, grandsons, etc. of the non-preferred phenotype, which negatively and cumulatively affects fitness over generations in a process reminiscent of the Fisher runaway process. This led us to suggest a sex-driven origin of conformity, indicating a possible evolutionary route towards animal and human culture that is rooted in the basic, and thus ancient, social constraints acting on mating preferences within a metapopulation. In a generic model, we show that dispersal among subpopulations within a metapopulation can effectively maintain independent Fisher runaway processes within subpopulations, while favouring the evolution of social learning and conformity at the metapopulation scale; both being essential for the evolution of long-lasting local traditions. The proposed evolutionary route to social learning and conformity casts surprising light on one of the major processes that much later participated in making us human. We further highlight several research avenues to define the spectrum of conformity better, and to account for its complexity. Future studies of conformity should incorporate experimental manipulation of group majority. We also encourage the study of potential links between conformity and mate copying, animal aggregations, and collective actions. Moreover, validation of the sex-driven origin of conformity will rest on the capacity of human and evolutionary sciences to investigate jointly the origin of social learning and conformity. This constitutes a stimulating common agenda and militates for a rapprochement between these two currently largely independent research areas.  相似文献   
998.
999.

Aim

The distribution of mesoplankton communities has been poorly studied at global scale, especially from in situ instruments. This study aims to (1) describe the global distribution of mesoplankton communities in relation to their environment and (2) assess the ability of various environmental-based ocean regionalizations to explain the distribution of these communities.

Location

Global ocean, 0–500 m depth.

Time Period

2008–2019.

Major Taxa Studied

Twenty-eight groups of large mesoplanktonic and macroplanktonic organisms, covering Metazoa, Rhizaria and Cyanobacteria.

Methods

From a global data set of 2500 vertical profiles making use of the Underwater Vision Profiler 5 (UVP5), an in situ imaging instrument, we studied the global distribution of large (>600 μm) mesoplanktonic organisms. Among the 6.8 million imaged objects, 330,000 were large zooplanktonic organisms and phytoplankton colonies, the rest consisting of marine snow particles. Multivariate ordination (PCA) and clustering were used to describe patterns in community composition, while comparison with existing regionalizations was performed with regression methods (RDA).

Results

Within the observed size range, epipelagic plankton communities were Trichodesmium-enriched in the intertropical Atlantic, Copepoda-enriched at high latitudes and in upwelling areas, and Rhizaria-enriched in oligotrophic areas. In the mesopelagic layer, Copepoda-enriched communities were also found at high latitudes and in the Atlantic Ocean, while Rhizaria-enriched communities prevailed in the Peruvian upwelling system and a few mixed communities were found elsewhere. The comparison between the distribution of these communities and a set of existing regionalizations of the ocean suggested that the structure of plankton communities described above is mostly driven by basin-level environmental conditions.

Main Conclusions

In both layers, three types of plankton communities emerged and seemed to be mostly driven by regional environmental conditions. This work sheds light on the role not only of metazoans, but also of unexpected large protists and cyanobacteria in structuring large mesoplankton communities.  相似文献   
1000.
According to the acid growth theory of auxin action, it has been proposed that auxin decreases root growth by inhibiting the proton pump, thus causing an alkalinization of the apoplast. This paper critically tests this hypothesis with corn (Zea mays L.) roots. It was found that: i) the pH-growth curve for roots exhibits a broad optimum ranging from pH 4.5 to 9. ii) Any acid-induced growth is of very short duration, iii) The low sensitivity of root growth to external pH is independent of both the pump activity and the buffer capacity of the bathing solution, iv) Neither incubation in acidic buffer nor stimulation of the proton pump reverts the auxin-induced root growth inhibition. It is concluded that the auxin-induced root growth inhibition is not mediated by cell wall alkalinization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号