首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1005篇
  免费   126篇
  国内免费   21篇
  2024年   1篇
  2023年   8篇
  2022年   8篇
  2021年   14篇
  2020年   42篇
  2019年   38篇
  2018年   28篇
  2017年   43篇
  2016年   45篇
  2015年   46篇
  2014年   57篇
  2013年   62篇
  2012年   55篇
  2011年   43篇
  2010年   44篇
  2009年   58篇
  2008年   61篇
  2007年   59篇
  2006年   56篇
  2005年   55篇
  2004年   24篇
  2003年   36篇
  2002年   37篇
  2001年   33篇
  2000年   32篇
  1999年   17篇
  1998年   21篇
  1997年   13篇
  1996年   12篇
  1995年   15篇
  1994年   7篇
  1993年   5篇
  1992年   10篇
  1991年   13篇
  1990年   8篇
  1989年   11篇
  1988年   2篇
  1987年   1篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   2篇
  1982年   6篇
  1981年   2篇
  1980年   3篇
排序方式: 共有1152条查询结果,搜索用时 31 毫秒
71.
The Iberian Peninsula contains diverse populations of freshwater fish, with major river basins comprising differentiated biogeographic units. The Duero River flows through the North‐Western Iberian Peninsula and is one of the most important rivers within the Iberian glacial refuge. Brown trout (Salmo trutta) populate this whole basin, and studies using both allozyme and microsatellite loci have detected a geographically sorted distribution of genetic variation in this species. In this work, sequences of the mitochondrial control region obtained from 299 brown trout from the Duero River were compared with other Iberian and European datasets. Two differentiated haplotype groups were detected inside the Duero River basin. One of them was related to the Atlantic (AT) lineage that is present in Northern European populations, whereas the other comprised an unique group that was restricted to the inner region of the basin. The amount of divergence of this Duero group from the other brown trout populations studied is consistent with a new trout lineage (Duero, DU) that is endemic to this river basin and that diverged from other Atlantic populations during the Pleistocene. The distribution of the DU and AT quaternary lineages in the Duero River was consistent with the ichthyological pattern described in the basin that originated during the Miocene–Pliocene. Evidence of selective processes that favour the haplotypes of the DU lineage may explain this discrepancy.  相似文献   
72.
Migration of populations to and from glacial refugia is responsible for various cases of speciation and subspeciation in Europe. The pattern of distribution and the degree of diversification between lineages originated by isolation in different glacial refugia usually depends on ecological traits, especially to their dispersal ability. Zerynthia polyxena is a philopatric species, scattered in small populations and rarely colonizing mountain areas. These characteristics probably caused repeated isolation during the Quaternary and may have favoured diversification. Actually two studies, based on both morphological and genetic data, suggest the existence of two highly distinct lineages in Europe having in Northern Italy their contact zone. In this study, I applied geometric morphometrics to male genitalia and demonstrated that (i) two morphotypes exist in Europe approximately facing on the two sides of the Po River; (ii) the two lineages probably survived glaciations in Italy and the Balkan Peninsula, respectively; then the Balkans lineage expanded to Central and Eastern Europe; (iii) no hybrid populations seem to exist in the contact area and, in one locality at least, the two lineages live in sympatry without any evidence of intermediates. These results suggest that (i) two sister species of Zerynthia exist in Europe. Accordingly, Papilio cassandra Geyer, 1828 is reinstated, as Zerynthia cassandra stat. rev., as the species to which the Zerynthia from Italy South of the Po River belong. Male genitalia differences with Zerynthia polyxena are described.  相似文献   
73.
74.
Biodiversity across a landscape is a product of both historical events and ongoing contemporary forces. The past and present factors that influence black bear Ursus americanus diversity on the Alexander Archipelago and mainland of Southeast Alaska were investigated by assessing nuclear genetic variation. The natural fragmentation of the region, the high vagility of black bears and their possible recent post-Pleistocene colonization to Southeast Alaska allowed us to discern between past and present forces characterizing diversity. Two known black bear lineages, estimated previously with mitochondrial DNA to have diverged 1.8 million years ago, remained evident in data from more rapidly evolving nuclear genetic markers. Two nuclear genetic clusters geographically correspond to the lineages, suggesting that contemporary movement since colonization (likely beginning 18 000 cybp) has not been sufficient to eliminate genetic differences between the highly divergent lineages. Concomitantly, the clearest pattern of genetic diversity is related to contemporary geographic patterns; contemporary geography differs from geography immediately after deglaciation due to sea-level change. Narrow saltwater straits, expansive ice fields, narrow beach fringes and saltwater inland bays separate genetically distinct groupings of black bears.  相似文献   
75.
Pleistocene glacial cycles undoubtedly altered the evolutionary trajectories of many taxa, yet few studies have examined the impact of such events on genetic differentiation and phylogeography at large geographic scales. Here we present the results of a circumarctic survey of mitochondrial DNA diversity in members of the Daphnia pulex complex. The analysis involved the survey of restriction site polymorphisms in a 2100-bp fragment of the NADH-4 (ND4) and NADH-5 (ND5) genes for 276 populations representing the two major groups (tenebrosa and pulicaria) in this complex across their Holarctic range. A comparison of the distribution patterns for seven clades in this complex revealed very clear phylogeographic structuring. Most notably, pulicaria group lineages were restricted primarily to the Nearctic, with some colonization of formerly glaciated portions of northern Europe. This group was not detected from vast expanses of northern Eurasia, including the Beringian glacial refuge. In contrast, tenebrosa group haplotypes showed considerable intercontinental divergence between Eurasian and North American lineages, but were absent from Greenland and Iceland, as well as the Canadian arctic archipelago. Dispersal in Eurasia was primarily in a westerly direction from Beringia, whereas dispersal in the Nearctic followed proglacial drainage patterns. Long-distance dispersal of certain lineages was observed in both groups, and variation in haplotype richness and nucleotide diversity allowed us to make inferences about the positioning of putative glacial refugia. Overall, the phylogeographic pattern of diversification in this arctic complex is characterized by the apparently unique postglacial histories for each clade, indicating that even closely allied taxa can respond independently to the allopatric effects of glacial cycles. This is in sharp contrast to other phylogeographic studies of species assemblages from more southern (unglaciated) latitudes, which are often characterized by concordant patterns.  相似文献   
76.
Aim  In order to look for a possible centre of survival for the Norway spruce ( Picea abies Karst.) in the south-western Alps, six natural populations of this area were investigated by means of genetic markers in order to assess the degree and the distribution of genetic diversity within the species.
Location  Western and South-western Alps.
Methods  Populations were genotyped using seven simple sequence repeat (SSR) markers. Basic population genetics parameters were estimated and the amount of genetic differentiation calculated.
Results  A large amount of variability was found (0.59 <  H e < 0.67); genetic differentiation as measured by F ST was 0.05, close to other similar studies; no isolation by distance was detected by a Mantel test. Analysis of molecular variance confirmed a high degree of variability within populations and a low degree of variability among populations. Finally, the number of populations from which those observed could have arisen was estimated by Bayesian analysis.
Main conclusions  The results presented here suggest that the present populations derive their genetic make-up from three inferred clusters. The possible existence in this area of a relict/refuge population during the last glaciation is discussed.  相似文献   
77.
Aim Interpretation of fossil pollen assemblages may benefit greatly from comparisons with modern palynological and vegetation analogues. To interpret the full‐ and late‐glacial vegetation in eastern‐central Europe we compared fossil pollen assemblages from this region with modern pollen assemblages from various vegetation types in southern Siberia, which presumably include the closest modern analogues of the last‐glacial vegetation of central Europe. Location Czech and Slovak Republics (fossil pollen assemblages); Western Sayan Mountains, southern Siberia (modern pollen assemblages). Methods Eighty‐eight modern pollen spectra were sampled in 14 vegetation types of Siberian forest, tundra and steppe, and compared with the last‐glacial pollen spectra from seven central European localities using principal components analysis. Results Both full‐ and late‐glacial pollen spectra from the valleys of the Western Carpathians (altitudes 350–610 m) are similar to modern pollen spectra from southern Siberian taiga, hemiboreal forest and dwarf‐birch tundra. The full‐glacial and early late‐glacial pollen spectra from lowland river valleys in the Bohemian Massif (altitudes 185–190 m) also indicate the presence of patches of hemiboreal forest or taiga. Other late‐glacial pollen spectra from the Bohemian Massif suggest an open landscape with steppe or tundra or a mosaic of both, possibly with small patches of hemiboreal forest. Main conclusions Our results are consistent with the hypothesis that during the full glacial and late glacial, the mountain valleys of the north‐western Carpathians supported taiga or hemiboreal forest dominated by Larix, Pinus cembra, Pinus sylvestris and Picea, along with some steppic or tundra formations. Forests tended to be increasingly open or patchy towards the west (Moravian lowlands), gradually passing into the generally treeless landscape of Bohemia, with possible woodland patches in locally favourable sites.  相似文献   
78.
Aim It has been proposed that the root vole subspecies, Microtus oeconomus finmarchicus, survived the last glacial period on islands on the north‐west coast of Norway. The Norwegian island of Andøya may have constituted the only site with permanent ice‐free conditions. Geological surveys and fossil finds from Andøya demonstrate that survival throughout the last glacial maximum was probably possible for some plants and animals. In this study we aim to infer the recent evolutionary history of Norwegian root vole populations and to evaluate the glacial survival hypothesis. Methods DNA sequence variation in the mitochondrial cytochrome b gene was studied in 46 root voles from 19 localities. Location Northern Fennoscandia and north‐west Russia with a focus on islands on the north‐west coast of Norway. Results The phylogeographical analyses revealed two North European phylogroups labelled ‘Andøya’ and ‘Fennoscandia’. The Andøya phylogroup contained root voles from the Norwegian islands of Andøya, Ringvassøya and Reinøya and two localities in north‐west Russia. The Fennoscandian phylogroup encompassed root voles from the three Norwegian islands of Kvaløya, Håkøya and Arnøya and the remaining specimens from Norway, northern Sweden and Finland. Nucleotide diversity within the Andøya and Fennoscandian phylogroups was similar, ranging from 0.5% to 0.7%. Main conclusions Both our genetic data and previously published morphological data are consistent with in situ glacial survival of root voles on Andøya during the last glacial maximum. However, the level of genetic diversity observed in the extant island populations, the past periods of severe climatic conditions on Andøya and the ecology of the root vole are somewhat difficult to reconcile with this model. A biogeographical scenario involving late glacial recolonization along the northern coasts of Russia and Norway therefore represents a viable alternative. Our results demonstrate that complex recolonization and extinction histories can generate intricate phylogeographical patterns and relatively high levels of genetic variation in northern populations.  相似文献   
79.
BACKGROUND AND AIMS: The historical influence of gene flow and genetic drift after the last glacial phase of the Quaternary Period is reflected in current levels of genetic diversity and population structure of plant species. Moreover, hybridization after secondary contact might also affect population genetic diversity and structure. An assessment was made of the genetic variation and hybrid zone structure in Iberian populations of the Mediterranean Phlomis lychnitis and P. crinita, for which phylogenetic relationships are controversial, and hybridization and introgression are common. METHODS: Allozyme variation at 13 loci was analysed in 1723 individual plants sampled from 35 natural locations of P. lychnitis, P. crinita subsp. malacitana and P. crinita subsp. crinita in southern and eastern Spain. Standard genetic diversity parameters were calculated and patterns of genetic structure in each taxon were tested to fit the equilibrium between gene flow and genetic drift. Individual multilocus genotypes were subjected to Bayesian clustering analysis to estimate hybridization and introgression rates for both geographic regions. KEY RESULTS: Contrasting patterns in the distribution of genetic variation among the three taxa were found. Phlomis lychnitis showed no significant inbreeding, low genetic differentiation among populations and no evidence of isolation by distance. Phlomis crinita subsp. malacitana and P. crinita subsp. crinita showed high levels of genetic structure consistent with a pattern of gene flow-drift equilibrium. Higher instances of hybridization and introgression were detected in locations from southern Spain compared with locations from eastern Spain, matching unimodal and bimodal hybrid zones, respectively. CONCLUSIONS: High instances of historical gene flow, range expansion and altitudinal movement during the Quaternary Period, and lineage sorting can explain the diversity of patterns observed. The results suggest that P. lychnitis is the most differentiated lineage in the group; however, the relationship between the three taxa remains unclear.  相似文献   
80.
Questions about how shifting distributions contribute to species diversification remain virtually without answer, even though rapid climate change during the Pleistocene clearly impacted genetic variation within many species. One factor that has prevented this question from being adequately addressed is the lack of precision associated with estimates of species divergence made from a single genetic locus and without incorporating processes that are biologically important as populations diverge. Analysis of DNA sequences from multiple variable loci in a coalescent framework that (i) corrects for gene divergence pre-dating speciation, and (ii) derives divergence-time estimates without making a priori assumptions about the processes underlying patterns of incomplete lineage sorting between species (i.e. allows for the possibility of gene flow during speciation), is critical to overcoming the inherent logistical and analytical difficulties of inferring the timing and mode of speciation during the dynamic Pleistocene. Estimates of species divergence that ignore these processes, use single locus data, or do both can dramatically overestimate species divergence. For example, using a coalescent approach with data from six loci, the divergence between two species of montane Melanoplus grasshoppers is estimated at between 200,000 and 300,000 years before present, far more recently than divergence estimates made using single-locus data or without the incorporation of population-level processes. Melanoplus grasshoppers radiated in the sky islands of the Rocky Mountains, and the analysis of divergence between these species suggests that the isolation of populations in multiple glacial refugia was an important factor in promoting speciation. Furthermore, the low estimates of gene flow between the species indicate that reproductive isolation must have evolved rapidly for the incipient species boundaries to be maintained through the subsequent glacial periods and shifts in species distributions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号