首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1011篇
  免费   126篇
  国内免费   21篇
  2024年   1篇
  2023年   8篇
  2022年   11篇
  2021年   14篇
  2020年   42篇
  2019年   38篇
  2018年   28篇
  2017年   43篇
  2016年   45篇
  2015年   46篇
  2014年   57篇
  2013年   62篇
  2012年   55篇
  2011年   43篇
  2010年   44篇
  2009年   58篇
  2008年   61篇
  2007年   59篇
  2006年   56篇
  2005年   55篇
  2004年   24篇
  2003年   36篇
  2002年   37篇
  2001年   33篇
  2000年   32篇
  1999年   17篇
  1998年   21篇
  1997年   13篇
  1996年   12篇
  1995年   15篇
  1994年   7篇
  1993年   5篇
  1992年   10篇
  1991年   13篇
  1990年   10篇
  1989年   11篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   2篇
  1982年   6篇
  1981年   2篇
  1980年   3篇
排序方式: 共有1158条查询结果,搜索用时 31 毫秒
51.
52.
53.
梭梭属(Haloxylon)植物是藜科的古老孑遗物种, 探究末次间冰期(last interglacial period, LIG)和末次盛冰期(last glacial maximum period, LGM)以来中国梭梭属植物的历史地理分布格局及其驱动机制, 对了解气候变化背景下旱生植物区系的发展与演化具有重要意义。本研究利用梭梭属85个自然分布点数据(60条梭梭(Haloxylon ammodendron)分布记录、25条白梭梭(H. persicum)分布记录)和2套环境因子数据, 整合GIS空间分析和9种物种分布模型, 分析了梭梭属末次间冰期以来的地理分布格局变化及其驱动机制。基于62个梭梭属种群的叶绿体基因测序数据, 利用最小成本路径方法, 模拟了末次间冰期以来梭梭属可能的扩散路径。利用R软件prcomp函数对影响梭梭属分布的环境变量进行主成分分析(principal component analysis, PCA), 评价了环境变量对梭梭属适宜分布的贡献, 并分析了关键变量与分布适宜性的相关性。结果表明: (1)集成模型的模拟精度较单一模型显著提升, 且对白梭梭的模拟精度高于梭梭; (2)末次间冰期以来, 梭梭属植物的分布均经历了显著收缩和冰后期扩张, 末次间冰期至末次盛冰期时期, 在准噶尔盆地、塔里木盆地西部广泛分布的梭梭大面积向西退缩至避难所(准噶尔盆地西北缘和塔里木盆地西北缘); 白梭梭从准噶尔盆地、塔里木盆地西端向南退缩至避难所(准噶尔盆地南缘); 末次盛冰期至今, 梭梭向东沿甘肃北部扩张直至内蒙古西部阿拉善荒漠, 白梭梭向东北方向小范围扩张, 占据了准噶尔盆地西部和南缘; (3)末次间冰期以来的气候波动对梭梭属植物的分布存在较大限制, 降水因子主导了梭梭属适宜分布面积的变化, 温度因子影响了梭梭属分布适宜性的高低。  相似文献   
54.
真猛犸象(Mammuthus primigenius)和披毛犀(Coelodonta antiquitatis)是北半球高纬度地区晚更新世动物群的主要成员,其消亡的年代和原因一直是国际学术界关注的热点科学问题。本文对黑龙江青冈县英贤村最新出土的5个真猛犸象和5个披毛犀化石进行了AMS14C年代测定,结果均大于4万年,部分化石可能已经超出了目前14C的测定范围。通过整理并对比已公开发表的中国境内两种动物化石的14C年代学数据,本文认为早期常规14C测年方法所获得的年代值需要重新考虑其准确性。埋藏地层与最新的AMS14C测年数据显示,我国真猛犸象化石年代主要集中于MIS3阶段;披毛犀在我国消亡的时间很可能晚于真猛犸象,至少延续到末次冰消期。中国猛犸象-披毛犀动物群化石仍然需要开展更多的年代学研究。  相似文献   
55.
Drying disturbances are the primary determinant of aquatic community biodiversity in dynamic river ecosystems. Research exploring how communities respond to disturbance has focused on benthic invertebrates in surface sediments, inadequately representing a connected community that extends into the subsurface. We compared subsurface and benthic invertebrate responses to drying, to identify common and context‐dependent spatial patterns. We characterized community composition, alpha diversity and beta diversity across a gradient of drying duration. Subsurface communities responded to drying, but these responses were typically less pronounced than those of benthic communities. Despite compositional changes and in contrast to reductions in benthic alpha diversity, the alpha diversity of subsurface communities remained stable except at long drying durations. Some primarily benthic taxa were among those whose subsurface frequency and abundance responded positively to drying. Collectively, changing composition, stable richness and taxon‐specific increases in occurrence provide evidence that subsurface sediments can support persistence of invertebrate communities during drying disturbances. Beta‐diversity patterns varied and no consistent patterns distinguished the total diversity, turnover or nestedness of subsurface compared to benthic communities. In response to increasing drying duration, beta diversity increased or remained stable for benthic communities, but remained stable or decreased for subsurface communities, likely reflecting contrasts in the influence of mass effects, priority effects and environmental filtering. Dissimilarity between subsurface and benthic communities remained stable or increased with drying duration, suggesting that subsurface communities maintain distinct biodiversity value while also supporting temporary influxes of benthic taxa during drying events. As temporary rivers increase in extent due to global change, we highlight that recognizing the connected communities that extend into the subsurface sediments can enable holistic understanding of ecological responses to drying, the key determinant of biodiversity in these dynamic ecosystems.  相似文献   
56.
Morphological differentiation in the ground beetles of the Nebria gregaria group, found on the Queen Charlotte Islands, has been used as support for the glacial refugium proposed for the northwest coast of North America. Two members of this species group, N. charlottae and N. louiseae, are restricted to cobble beaches in this archipelago. A third, N. haida, is found only in alpine regions of the archipelago and the adjacent mainland. The remaining two species of the gregaria group, N. lituyae and N. gregaria, show highly restricted distributions in the mountains of the Alaska panhandle and on the beaches of the Aleutian Islands, respectively. To determine the relationships of the five species, we conducted phylogenetic analyses on nucleotide sequence data obtained from five regions of the mitochondrial DNA. In total, 1835 bp were analyzed. The results suggest that one species, N. lituyae, does not belong in the gregaria group, and that only seven mutations separated the two most divergent of the four remaining species. We also conducted random amplified polymorphic DNA fingerprinting analyses on genomic DNA extracted from the five species. Analyses of genetic diversity revealed a lack of molecular differentiation among the Queen Charlotte species, suggesting that these populations may be postglacial in origin and that together N. gregaria, N. charlottae, N. louiseae, and N. haida might represent local variations of a single species. These results are consistent with conclusions derived for the morphological and genetical differentiation among Gasterosteus populations in the archipelago.  相似文献   
57.
Ross TK 《Molecular ecology》1999,8(9):1363-1373
The Iowa Pleistocene snail, Discus macclintocki, is an endangered species that survives only in relictual populations on algific (cold-air) talus slopes in northeast Iowa and northwest Illinois in the central region of the USA. These populations are believed to have been isolated since the temperatures began to warm at the end of the last glacial period around 16 500 years ago. DNA sequencing of the 16s rRNA gene of the mitochondria was used to determine the genetic relationship among 10 populations and the genetic diversity within these populations. Genetic diversity is extremely high within this species with 40 haplotypes spread across the 10 populations sampled within a 4000 km2 region. Phylogenetic analyses showed that haplotypes formed monophyletic groups by the watershed on which they were found, suggesting that watersheds were important historical avenues of gene flow. Genetic distances were strongly related to the geographical distance among all populations, but this relationship was dependent on the scale being considered.  相似文献   
58.
Knowledge of the biology of native fishes of the Murray-Darling Basin is based largely on studies conducted under hatchery conditions and on a limited number of recreationally important species. From observations that increases in water level in aquaculture ponds initiate spawning in some species, and from limited studies of wild fishes and studies in overseas floodplain river systems, a perception has emerged of the importance of flooding and the flood plain in the life cycles of Murray-Darling fishes in general. However, there is little confirmatory evidence of the use of temporary floodplain habitats by larvae, juveniles or adults. The significance of in-channel habitats, especially for rearing, has received little attention. Murray-Darling fish species can be placed into three life history modes, based mainly on spawning style and time and developmental intervals of larvae at first feeding. Fish in each group may be able to take advantage of floods if the timing is right and prey are plentiful, however, the larvae of some species are able to recruit under non-flood conditions within the main river channel. This forms the basis of the low flow recruitment hypothesis, which attempts to explain why some species spawn during the warmest months and lowest flows and how they are able to recruit under these conditions. This hypothesis is then placed in the context of the current state of knowledge of the relationships between flow and the biology of Murray-Darling fishes, specifically cues for spawning, movement and recruitment. The lack of widespread evidence for floodplain use by any life history interval of fish may be due to a paucity of study, however, there are some fundamental factors, such as the predictability of timing and duration of high flow events as well as the lack of coincidence of high flows and high temperatures in some regions of the Basin, which may be important in determining the use of floodplain habitats by fish.  相似文献   
59.
Two main possibilities regarding glacial survival of the mountain flora of the Alps during the Quaternary have been discussed: the tabula rasa and the nunatak hypotheses. Eritrichium nanum (L.) Gaudin (Boraginaceae) is a perennial cushion plant, occurring at high elevations of the Central Alps and having a preference for extreme habitats. It belongs to a group of high-alpine plants, for which in situ glacial survival on nunataks is ecologically possible. By investigating 20 populations of E. nanum of potential nunatak and peripheral refugial regions using amplified fragment length polymorphism, considerable genetic differences between populations from the Central Alps and populations from peripheral refugia were detected; hence, the latter probably did not serve as potential sources for the re-colonization of the Central Alps after glaciation. Genetic variation was hierarchically structured (AMOVA), and three genetically distinct regions could be identified in the Central Alps. Two of these, the Penninic and Rhaetic Alps, correspond to nunatak regions proposed in the biogeographic literature. Populations from the Lepontic Alps formed a third genetic group. Genetic correlation (Mantel statistics) was highest within populations, with a modest decline among populations within specific nunatak regions and a negative correlation outside the genetic influence of specific nunatak regions. In situ glacial survival in E. nanum could be a model for the Quaternary history of other alpine plants, especially those that also occur at high elevations and in similar habitats.  相似文献   
60.
Polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) and sequence analysis of noncoding regions of chloroplast DNA were used to investigate 37 populations of Eritrichium nanum covering its total distribution area, the European Alps. There was no haplotypic variation within the populations, and most haplotypes were restricted to single sites or to neighbouring populations, suggesting low levels of long distance gene flow via seeds. The present geographical distribution of haplotypes probably reflects an ancient geographical pattern within two regions in the intensely glaciated western and eastern central Alps identified as genetic hotspot areas. These two regions contained seven of the total of 11 haplotypes, including many of the most derived ones. The divergent haplotypes formed closely related groups, which supported a separate evolution of these haplotypes in these two regions and, more importantly, gave strong evidence for the in situ survival of these populations on nunataks within the western and eastern central Alps during Pleistocene glaciation. This result is in concordance with a previous study on E. nanum using nuclear markers. Only one haplotype was common and widespread throughout the distributional range of E. nanum. At the same time, it was the evolutionarily basal-most and all other haplotypes were best described as its descendants. This haplotype is hypothesized to be genetically identical to a Tertiary Alpine colonizing ancestor, whose distribution was secondarily fragmented and infiltrated by derived haplotypes originating through local mutations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号