首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13534篇
  免费   1452篇
  国内免费   569篇
  2024年   17篇
  2023年   241篇
  2022年   156篇
  2021年   365篇
  2020年   466篇
  2019年   560篇
  2018年   463篇
  2017年   551篇
  2016年   514篇
  2015年   581篇
  2014年   612篇
  2013年   750篇
  2012年   545篇
  2011年   548篇
  2010年   478篇
  2009年   720篇
  2008年   721篇
  2007年   834篇
  2006年   671篇
  2005年   608篇
  2004年   543篇
  2003年   490篇
  2002年   436篇
  2001年   366篇
  2000年   327篇
  1999年   334篇
  1998年   322篇
  1997年   238篇
  1996年   241篇
  1995年   207篇
  1994年   159篇
  1993年   173篇
  1992年   159篇
  1991年   147篇
  1990年   129篇
  1989年   124篇
  1988年   113篇
  1987年   98篇
  1986年   78篇
  1985年   71篇
  1984年   68篇
  1983年   44篇
  1982年   58篇
  1981年   49篇
  1980年   40篇
  1979年   31篇
  1978年   31篇
  1977年   18篇
  1976年   19篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Muscle fine structure reflects ecotype in two nototheniids   总被引:3,自引:0,他引:3  
The fine structure of swimming (pectoral) and myotomal (axial) skeletal muscle and myocardium of two species of Antarctic nototheniid fishes were studied by electron microscopy, comparing the cryopelagic Pagothenia borchgrevinki and the benthic Trematomus bernacchii . Mean fibre size varied by a factor of four among muscles within each species and may have reflected the locomotory power available, being larger in pectoral oxidative (red) and axial glycolytic (white) muscle of P. borchgrevinki . Both species use labriform locomotion, and the more active P. borchgrevinki had a greater capillary supply, expressed as a capillary to fibre ratio, than T. bernacchii to both red (3·48 ± 0·36 v . 1·63 ± 0·14, mean ±  s . e .; P  < 0·01) and white (2·70 ± 0·20 v . 1·53 ± 0·18, mean ±  s . e .; P  < 0·01) regions of the pectoral musculature. The greater aerobic scope of P. borchgrevinki was strikingly demonstrated in the higher mitochondrial content of all skeletal muscle types sampled, and the ventricular myocardium (0·269 ± 0·011 v . 0·255 ± 0·012 mean ±  s . e .; P  < 0·05). Minor differences were found in other elements of fibre composition, with the exception of a five‐fold greater lipid content in pectoral red fibres of P. borchgrevinki (0·074 ± 0·014 mean ±  s . e .) v . T. bernacchii (0·010 ± 0·003; P  < 0·05). Differences in muscle fine structure among species clearly reflected differences in their ecotype.  相似文献   
32.
The little known endemic Henderson Island rail (or Henderson rail) Porzflna atra , inhabits forest on the coastal plain and upraised plateau of Henderson Island. Rails were studied for 15 months from January 1991 to March 1992. The population was estimated at c. 6200 individuals living in pairs or cooperative groups of 3–4 adults on territories averaging about 1 ha. Two or three eggs were laid in covered or open nests near the ground from mid-July to mid-February. Up to five consecutive nesting attempts were made in cases where eggs or young chicks were lost. Adults laid a second clutch when chicks were fully feathered at about one month of age. Both sexes incubated and helped rear the young. Older chicks sometimes helped feed younger siblings. Dispersal of juveniles from the natal territory took place in April. Adult birds underwent a rapid, simultaneous post-nuptial moult of the remiges in February-April; the post-juvenile moult involved body feathers only. Data on morphometries, breeding ecology, courtship behaviour and voice are compared with available information for the spotless crake P. tabuensis , the Henderson rail's closest relative and probable ancestor. These comparisons provide some information on how these two taxa have differentiated since rails arrived on Henderson Island some time in the last 380000 years.  相似文献   
33.
1. Bergmann's rule states that organisms inhabiting colder environments show an increase in body size or mass in comparison to their conspecifics living in warmer climates. Although originally proposed for homoeothermic vertebrates, this rule was later extended to ectotherms. In social insects, only a few studies have tested this rule and the results were ambiguous. Here, ‘body size’ can be considered at two different levels (the size of the individual workers or the size of the colony). 2. In this study, data from 53 nests collected along altitudinal gradients in the Alps were used to test the hypotheses that the worker body size and colony size of the ant Leptothorax acervorum increase with increasing altitude and therefore follow Bergmann's rule. 3. The results show that the body size of workers but not the colony size increases with altitude. Whether this pattern is driven by starvation resistance or other mechanisms remains to be investigated.  相似文献   
34.
The allometric relationships between canine base area, first molar and summed molar crown area, and the glabella–opisthocranion distance, and the direct allometric relationships between canine and molar size have been established in five primate taxa. Separate sex and combined sex ‘intraspecific’, and ‘interspecific’ regression and ‘best fit’ allometry coefficients were computed. This analysis showed that for any increase in glabella–opisthocranion length, the rate of increase in canine size exceeds the rate of increase in molar area, and ‘best fit’ solutions indicate that canine base area is positively allometric when related directly to molar crown area. These results were compared with data available for the ‘gracile’ australopithecine, A. africanus, and two ‘robust’ australopithecine taxa, A. boisei and A. robustus. The differences in canine and molar size which occur between the ‘gracile’ taxon and the two ‘robust’ taxa do not correspond to any of the trends in the comparative allometric models. Data on glabella–opisthocranion length for the fossils, meagre though they are, show that while the proportional increase in molar crown area between the taxa corresponds to comparative allometry models, the reduced canine size in the ‘robust’ taxa is against comparative allometric trends. These results indicate that, at least in terms of canine/molar proportions, the differences between the ‘gracile’ and ‘robust’ australopithecines are not merely allometric and may indicate significant dietary or behavioural differences.  相似文献   
35.
36.
37.
38.
39.
Abstract. 1. The causes and reproductive consequences of body size variation of Brachinus lateralis Dejean, a parasitic carabid beetle, were investigated.
2. Body size variation occurs within and between sites. Host size has a major influence on body size of the adult.
3. Fecundity is positively correlated with body size. Egg size is not correlated with body size.
4. Mating males tend to be larger than non-mating males. There is a positive correlation of body sizes in mating pairs.
5. Limited opportunity for host choice may maintain size variation despite the advantages of large size.
6. The non-random patterns of mating for a species without obvious intrasexual aggression suggest that subtle means of male-male competition or female choice may be important.  相似文献   
40.
Random amplified polymorphic DNA (RAPD) markers are used to estimate interspecific variation among mangrove and non-mangrove Heritiera fomes, H. littoralis and H. macrophylla. All the species have 2n = 38 chromosomes, with minute structural changes distinguishing the karyotype of each species. Significant variation of 4C DNA content occurs at the interspecific level. Interspecific polymorphism ranged from 14.09% between H. fomes and H. littoralis to 52.73% between H. fomes and H. macrophylla. H. macrophylla showed wide polymorphism in the RAPD marker with H. littoralis (51.23%) and H. fomes (52.73%). Two distinct RAPD products obtained from OPA-10 (1000 bp) and OPD-15 (900 bp) found characteristic molecular markers in H. macrophylla , a species from a non-mangrove habitat. H. macrophylla was more distantly related to H. fomes [genetic distance (1-F) = 0.305] than to H. littoralis [genetic distance (1-F) = 0.273]. H. littoralis was of a closer affinity to H. fomes [genetic distance (1-F) = 0.218] than to H. macrophylla.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号