首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72018篇
  免费   4528篇
  国内免费   6375篇
  2024年   111篇
  2023年   1122篇
  2022年   1189篇
  2021年   2060篇
  2020年   2064篇
  2019年   2684篇
  2018年   2331篇
  2017年   1897篇
  2016年   1999篇
  2015年   2259篇
  2014年   3545篇
  2013年   4627篇
  2012年   2987篇
  2011年   3589篇
  2010年   3651篇
  2009年   3503篇
  2008年   3629篇
  2007年   3989篇
  2006年   3805篇
  2005年   3598篇
  2004年   3430篇
  2003年   2963篇
  2002年   2572篇
  2001年   2037篇
  2000年   1645篇
  1999年   1678篇
  1998年   1480篇
  1997年   1295篇
  1996年   1298篇
  1995年   1271篇
  1994年   1220篇
  1993年   959篇
  1992年   876篇
  1991年   765篇
  1990年   613篇
  1989年   539篇
  1988年   528篇
  1987年   442篇
  1986年   407篇
  1985年   363篇
  1984年   394篇
  1983年   220篇
  1982年   305篇
  1981年   231篇
  1980年   219篇
  1979年   142篇
  1978年   97篇
  1977年   81篇
  1976年   85篇
  1974年   29篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Summary Previous work has shown that the monoclonal antibody 22/18 identifies progenitor cells (blastemal cells) which depend on the nerve for their division in the early stages of limb regeneration in the newt,Notophthalmus viridescens. This antibody also reacts with cultured cells derived from the newt limb, and the intensity of immunoreactivity appears related to cell density and differentiation into myotubes. We report here that the monoclonal antibody 22/18 recognizes a polypeptide (22/18 antigen) which is intracellular and filamentous. Double staining of cells with 22/18 monoclonal antibody and antibodies against various cytoskeletal components indicates that the epitope is expressed on an intermediate filament component. Although this antibody is specific for blastemal cells in cryostat sections of the regenerating limb, its reactivity on immunoblots is not confined to this tissue. The 22/18 antigen is differentially affected by aldehyde fixatives distinguished by the spacing of their reactive groups. While formaldehyde fixation impairs detection of the antigen, ethylene glycol-bis[succinic acid n-hydroxysuccinimide ester] reveals the antigen in sections of normal and regenerating limbs in a distribution that is consistent with the one obtained from immunoblots. We suggest that the 22/18 monoclonal antibody detects a change in protein conformation, probably related to changes in the physiological state of the cell, that occurs transiently during regeneration and possibly during development.  相似文献   
122.
123.
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide with limited therapeutic options. Comprehensive investigation of protein posttranslational modifications in HCC is still limited. Lysine acetylation is one of the most common types of posttranslational modification involved in many cellular processes and plays crucial roles in the regulation of cancer. In this study, we analyzed the proteome and K-acetylome in eight pairs of HCC tumors and normal adjacent tissues using a timsTOF Pro instrument. As a result, we identified 9219 K-acetylation sites in 2625 proteins, of which 1003 sites exhibited differential acetylation levels between tumors and normal adjacent tissues. Interestingly, many novel tumor-specific K-acetylation sites were characterized, for example, filamin A (K865), filamin B (K697), and cofilin (K19), suggesting altered activities of these cytoskeleton-modulating molecules, which may contribute to tumor metastasis. In addition, we observed an overall suppression of protein K-acetylation in HCC tumors, especially for enzymes from various metabolic pathways, for example, glycolysis, tricarboxylic acid cycle, and fatty acid metabolism. Moreover, the expression of deacetylase sirtuin 2 (SIRT2) was upregulated in HCC tumors, and its role of deacetylation in HCC cells was further explored by examining the impact of SIRT2 overexpression on the proteome and K-acetylome in Huh7 HCC cells. SIRT2 overexpression reduced K-acetylation of proteins involved in a wide range of cellular processes, including energy metabolism. Furthermore, cellular assays showed that overexpression of SIRT2 in HCC cells inhibited both glycolysis and oxidative phosphorylation. Taken together, our findings provide valuable information to better understand the roles of K-acetylation in HCC and to treat this disease by correcting the aberrant acetylation patterns.  相似文献   
124.
125.
126.
Abstract Energy-coupling sites in the electron transport chain of the obligately fermentative aerotolerant bacterium Zymomonas mobilis were examined. The H+ /O stoichiometry of the electron transport chain in intact bacteria oxidizing ethanol was close to 3.3. Cytoplasmic membrane vesicles coupled NADH oxidation to ATP synthesis. With ascorbate/phenazine methosulfate they showed oxygen uptake which was sensitive to antimycin A, but no significant ATP synthesis could be detected. Cells with a defective coupling site I, prepared by cultivation on a sulfate-deficient medium, showed a decreased rotenone sensitivity of respiration, and they lacked almost all the respiration-driven proton translocation and ATP synthesis. We conclude that, despite the reported composition of the electron transport chain, only energy coupling site 1 was functional in Z. mobilis .  相似文献   
127.
128.
129.
The magnitudes of inter-chromophore interactions in bacterial photosynthetic reaction centers are investigated by measuring absorption and Stark spectra of reaction centers in which monomeric chromophores are modified and in a novel triplet mutant which lacks the special pair. The circular dichroism spectrum of the triple mutant reaction center was also measured. Only small changes in the spectroscopic properties are observed, as has also been found for several types of reaction centers in which the absorption or chemical properties of a chromophore are altered by site-specific mutations. We conclude that the electronic absorption, circular dichroism and Stark features of the special pair and the monomeric chromophores in the reaction center are relatively insensitive to inter-chromophore interactions.  相似文献   
130.
Photosynthetic gas exchange and the stable isotopic composition of foliage water were measured for a xylem tapping mistletoe, Phoradendron juniperinum, and its host tree, Juniperus osteosperma, growing in southern Utah. The observed isotopic composition of water extracted from foliage was compared to predictions of the Craig-Gordon model of isotopic enrichment at evaporative sites within leaves. Assimilation rates of juniper were higher and stomatal conductance was lower than the values observed for the mistletoe. This resulted in lower intercellular/ ambient CO2 values in the juniper tree relative to its mistletoe parasite. For mistletoe, the observed foliage water hydrogen and oxygen isotopic enrichment was less than that predicted by the model. In juniper, foliage water hydrogen isotopic enrichment was also lower than that predicted by the evaporative enrichment model. In contrast, the oxygen isotopic enrichment in juniper foliage water was slightly greater than that predicted for the evaporative sites within leaves. Hydrogen isotopic enrichment in mistletoe foliage shows systematic variation with stem segment, being highest near the tips of the youngest stems and decreasing toward the base of the mistletoe, where isotopic composition is close to that of stem water in the host tree. In a correlated pattern, mid-day stomatal conductance declined abruptly in mistletoe foliage of increasing age.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号