首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6016篇
  免费   995篇
  国内免费   1022篇
  2024年   34篇
  2023年   341篇
  2022年   238篇
  2021年   407篇
  2020年   458篇
  2019年   500篇
  2018年   440篇
  2017年   380篇
  2016年   341篇
  2015年   282篇
  2014年   332篇
  2013年   459篇
  2012年   268篇
  2011年   245篇
  2010年   236篇
  2009年   299篇
  2008年   301篇
  2007年   305篇
  2006年   297篇
  2005年   297篇
  2004年   260篇
  2003年   213篇
  2002年   165篇
  2001年   143篇
  2000年   131篇
  1999年   86篇
  1998年   92篇
  1997年   70篇
  1996年   59篇
  1995年   42篇
  1994年   40篇
  1993年   22篇
  1992年   28篇
  1991年   28篇
  1990年   25篇
  1989年   19篇
  1988年   17篇
  1987年   19篇
  1986年   14篇
  1985年   16篇
  1984年   22篇
  1983年   10篇
  1982年   14篇
  1981年   3篇
  1980年   8篇
  1979年   7篇
  1978年   4篇
  1973年   3篇
  1972年   2篇
  1958年   6篇
排序方式: 共有8033条查询结果,搜索用时 463 毫秒
131.
Utilization of low-input feed resources rich in plant bioactive compounds is a promising strategy for modulating the fatty acid profile in ruminant products. They manipulate microbes involved in rumen biohydrogenation and increase the accumulation of desirable fatty acids at the tissue level. Therefore, the present study was undertaken to assess the effect of dietary supplementation of aniseed straw and eucalyptus leaves on growth performance, carcass traits and fatty acid profile of finisher lambs. Thirty-six Malpura hogget were divided into three treatment groups of 12 each, reared individually in pen (1.6 m × 1.1 m) and fed ad libitum complete feed blocks made up of 55 parts concentrate, 5 parts molasses and 40 parts roughage. Roughage in control (Con) was 20 parts each of ardu (Ailanthus excelsa) leaves and oat (Avena sativa) straw. In test diets, that is, Con-as and Con-el, 10% aniseed (Pimpinella anisum) straw and Eucalyptus rudis leaves, respectively, were added by replacing 5% each of oat straw and eucalyptus leaves. The lambs were weighed weekly; and at the end of 3 months of feeding trial, the lambs were slaughtered to study the carcass traits, composition and product evaluation. Average daily gain (ADG) and DM intake (DMI) was higher (P < 0.05) in Con-as compared to Con and Con-el, while ADG and feed conversion ratio decreased (P < 0.05) by 29.4% and 36.4%, respectively, in Con-el compared to Con. Carcass traits showed lower (P < 0.05) loin eye area and chilling loss in the Con-el group compared to the Con-as and Con, and the total carcass fat compared to Con-as. However, the keeping quality of meat improved in both Con-as and Con-el which was reflected by lower (P < 0.05) thiobarbituric acid-reactive substances values. Nuggets prepared from Con and Con-as meat had superior (P < 0.05) sensory attributes with an overall palatability. Fatty acid profile of longissimus thoracis muscle showed lower (P < 0.05) atherogenic and thrombogenic indices in Con-as and higher (P < 0.05) in Con-el group. Moreover, in Con-as group, the proportion of C16:0 was lower (P < 0.05) and C18:3n-3 was higher (P < 0.05), but no effect was observed on the amount of conjugated linoleic acid (CLA; C18:2 c9t11). In case of adipose tissue, the content of CLA was higher (P < 0.05), and the ratio of n-6:n-3 was more nearer to desirable levels in Con-as group. Therefore, it can be concluded that aniseed straw is a promising feed supplement compared to eucalyptus leaves for improving meat quality and fatty acid profile in lambs.  相似文献   
132.
Monitoring ecosystem functions in forests is a priority in a climate change scenario, as climate‐induced events may initially alter the functions more than slow‐changing attributes, such as biomass. The ecosystem functional properties (EFPs) are quantities that characterize key ecosystem processes. They can be derived by point observations of gas and energy exchanges between the ecosystems and the atmosphere that are collected globally at FLUXNET flux tower sites and upscaled at ecosystem level. The properties here considered describe the ability of ecosystems to optimize the use of resources for carbon uptake. They represent functional forest information, are dependent on environmental drivers, linked to leaf traits and forest structure, and influenced by climate change effects. The ability of vegetation optical depth (VOD) to provide forest functional information is investigated using 2011–2014 satellite data collected by the Soil Moisture and Ocean Salinity mission and using the EFPs as reference dataset. Tropical forests in Africa and South America were analyzed, also according to ecological homogeneous units. VOD jointly with water deficit information explained 93% and 87% of the yearly variability in both flux upscaled maximum gross primary productivity and light use efficiency functional properties, in Africa and South America forests respectively. Maps of the retrieved properties evidenced changes in forest functional responses linked to anomalous climate‐induced events during the study period. The findings indicate that VOD can support the flux upscaling process in the tropical range, affected by high uncertainty, and the detection of forest anomalous functional responses. Preliminary temporal analysis of VOD and EFP signals showed fine‐grained variability in periodicity, in signal dephasing, and in the strength of the relationships. In selected drier forest types, these satellite data could also support the monitoring of functional dynamics.  相似文献   
133.
134.
135.
Deforestation is a global process that has strongly affected the Atlantic Forest in South America, which has been recognised as a threatened biodiversity hotspot. An important proportion of deforested areas were converted to forest plantations. Araucaria angustifolia is a native tree to the Atlantic Forest, which has been largely exploited for wood production and is currently cultivated in commercial plantations. An important question is to what extent such native tree plantations can be managed to reduce biodiversity loss in a highly diverse and vulnerable forest region . We evaluated the effect of stand age, stand basal area, as a measure of stand density, and time since last logging on the density and richness of native tree regeneration in planted araucaria stands that were successively logged over 60 years, as well as the differences between successional groups in the response of plant density to stand variables. We also compared native tree species richness in planted araucaria stands to neighbouring native forest. Species richness was 71 in the planted stands (27 ha sampled) and 82 in native forest (18 ha sampled) which approximate the range of variation in species richness found in the native forests of the study area. The total abundance and species richness of native trees increased with stand age and time since last logging, but ecological groups differed in their response to such variables. Early secondary trees increased in abundance with stand age 3–8 times faster than climax or late secondary trees. Thus, the change in species composition is expected to continue for a long term. The difference in species richness between native forest and planted stands might be mainly explained by the difference in plant density. Therefore, species richness in plantations can contribute to local native tree diversity if practices that increase native tree density are implemented.  相似文献   
136.
Continuous livestock grazing can have negative effects on biodiversity and landscape function in arid and semi‐arid rangelands. Alternative grazing management practices, such as rotational grazing, may be a viable option for broad‐scale biodiversity conservation and sustainable pastoral management. This study compared ground cover, plant species composition and floristic and functional diversity along gradients of grazing intensity between a pastoral property rotationally grazed by goats and an adjacent nature reserve (ungrazed by commercial livestock) in semi‐arid south‐eastern Australia. Understorey plant species composition differed significantly between the rotationally grazed property and the nature reserve, with a greater proportion and frequency of palatable species recorded in the nature reserve. Understorey plant species richness, diversity, functional biodiversity measures and ground cover declined with increasing grazing pressure close to water points under commercial rotational grazing management. However, at a whole‐paddock scale, there were few differences in plant biodiversity and ground cover between the rotationally grazed property and the nature reserve, despite differences in overall plant species composition. Flexible, adaptive, rotational grazing should be investigated further for its potential to achieve both socio‐economic and biodiversity conservation outcomes in semi‐arid rangelands to complement existing conservation reserves.  相似文献   
137.
Satellite data indicate significant advancement in alpine spring phenology over decades of climate warming, but corresponding field evidence is scarce. It is also unknown whether this advancement results from an earlier shift of phenological events, or enhancement of plant growth under unchanged phenological pattern. By analyzing a 35‐year dataset of seasonal biomass dynamics of a Tibetan alpine grassland, we show that climate change promoted both earlier phenology and faster growth, without changing annual biomass production. Biomass production increased in spring due to a warming‐induced earlier onset of plant growth, but decreased in autumn due mainly to increased water stress. Plants grew faster but the fast‐growing period shortened during the mid‐growing season. These findings provide the first in situ evidence of long‐term changes in growth patterns in alpine grassland plant communities, and suggest that earlier phenology and faster growth will jointly contribute to plant growth in a warming climate.  相似文献   
138.
A key challenge in ecology is to understand the relationships between organismal traits and ecosystem processes. Here, with a novel dataset of leaf length and width for 10 480 woody dicots in China and 2374 in North America, we show that the variation in community mean leaf size is highly correlated with the variation in climate and ecosystem primary productivity, independent of plant life form. These relationships likely reflect how natural selection modifies leaf size across varying climates in conjunction with how climate influences canopy total leaf area. We find that the leaf size?primary productivity functions based on the Chinese dataset can predict productivity in North America and vice‐versa. In addition to advancing understanding of the relationship between a climate‐driven trait and ecosystem functioning, our findings suggest that leaf size can also be a promising tool in palaeoecology for scaling from fossil leaves to palaeo‐primary productivity of woody ecosystems.  相似文献   
139.
Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro‐organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function . Trait‐based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and ‐omics‐based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait‐based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号