首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10120篇
  免费   1878篇
  国内免费   3045篇
  2024年   31篇
  2023年   348篇
  2022年   229篇
  2021年   487篇
  2020年   662篇
  2019年   769篇
  2018年   630篇
  2017年   587篇
  2016年   586篇
  2015年   566篇
  2014年   550篇
  2013年   602篇
  2012年   487篇
  2011年   537篇
  2010年   485篇
  2009年   593篇
  2008年   650篇
  2007年   715篇
  2006年   666篇
  2005年   598篇
  2004年   560篇
  2003年   482篇
  2002年   463篇
  2001年   410篇
  2000年   376篇
  1999年   297篇
  1998年   279篇
  1997年   206篇
  1996年   174篇
  1995年   156篇
  1994年   131篇
  1993年   114篇
  1992年   127篇
  1991年   86篇
  1990年   98篇
  1989年   60篇
  1988年   34篇
  1987年   37篇
  1986年   41篇
  1985年   19篇
  1984年   23篇
  1983年   17篇
  1982年   31篇
  1981年   5篇
  1980年   9篇
  1979年   7篇
  1978年   8篇
  1977年   7篇
  1976年   4篇
  1958年   2篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
901.
广西石灰岩季节性雨林分类的研究   总被引:9,自引:3,他引:6  
王献溥  李信贤 《植物研究》1998,18(4):428-460
广西北热带地区石灰岩山地占据相当大的面积,特别是桂西南一带,那里形成一种独特的石灰岩季节性雨林,与相邻的砂页岩或花岗岩山地季节性雨林镶嵌分布。本文主要论述它的分类系统和地理分布规律。  相似文献   
902.
903.
Warmer and drier climates over Eastern Amazonia have been predicted as a component of climate change during the next 50–100 years. It remains unclear what effect such changes will have on forest–atmosphere exchange of carbon dioxide (CO2) and water, but the cumulative effect is anticipated to produce climatic feedback at both regional and global scales. To allow more detailed study of forest responses to soil drying, a simulated soil drought or 'throughfall exclusion' (TFE) experiment was established at a rain forest site in Eastern Amazonia, Brazil, for which time-series sap flow and soil moisture data were obtained. The experiment excluded 50% of the throughfall from the soil. Sap flow data from the forest plot experiencing normal rainfall showed no limitation of transpiration throughout the two monitored dry seasons. Conversely, data from the TFE showed large dry season declines in transpiration, with tree water use restricted to 20% of that in the control plot at the peak of both dry seasons. The results were examined to evaluate the paradigm that the restriction on transpiration in the dry season was caused by limitation of soil-to-root water transport, driven by low soil water potential and high soil-to-root hydraulic resistance. This paradigm, embedded in the soil–plant–atmosphere (SPA) model and driven using on-site measurements, provided a good explanation ( R 2 > 0.69) of the magnitude and timing of changes in sap flow and soil moisture. This model-data correspondence represents a substantial improvement compared with other ecosystem models of drought stress tested in Amazonia. Inclusion of deeper rooting should lead to lower sensitivity to drought than the majority of existing models. Modelled annual GPP declined by 13–14% in response to the treatment, compared with estimated declines in transpiration of 30–40%.  相似文献   
904.
In many systems, native communities are being replaced by novel exotic-dominated ones. We experimentally compared species diversity decline between nine-species grassland communities under field conditions to test whether diversity maintenance mechanisms differed between communities containing all exotic or all native species using a pool of 40 species. Aboveground biomass was greater in exotic than native plots, and this difference was larger in mixtures than in monocultures. Species diversity declined more in exotic than native communities and declines were explained by different mechanisms. In exotic communities, overyielding species had high biomass in monoculture and diversity declined linearly as this selection effect increased. In native communities, however, overyielding species had low biomass in monoculture and there was no relationship between the selection effect and diversity decline. This suggests that, for this system, yielding behaviour is fundamentally different between presumably co-evolved natives and coevolutionarily naive exotic species, and that native-exotic status is important to consider.  相似文献   
905.
There has been a rapidly developing literature on the effects of some of the major drivers of global change on carbon (C) sequestration, particularly carbon dioxide (CO2) enrichment, land use change, nitrogen (N) deposition and climate change. However, remarkably little attention has been given to one major global change driver, namely biological invasions. This is despite growing evidence that invasive species can dramatically alter a range of aboveground and belowground ecosystem processes, including those that affect C sequestration. In this review, we assess the evidence for the impacts of biological invaders on forest C stocks and C sequestration by biological invaders. We first present case studies that highlight a range of invader impacts on C sequestration in forest ecosystems, and draw on examples that involve invasive primary producers, decomposers, herbivores, plant pathogens, mutualists and predators. We then develop a conceptual framework for assessing the effects of invasive species on C sequestration impacts more generally, by identifying the features of biological invaders and invaded ecosystems that are thought to most strongly regulate C in forests. Finally we assess the implications of managing invasive species on C sequestration. An important principle that emerges from this review is that the direct effects of invaders on forest C are often smaller and shorter‐term than their indirect effects caused by altered nutrient availability, primary productivity or species composition, all of which regulate long‐term C pools and fluxes. This review provides a conceptual basis for improving our general understanding of biological invaders on ecosystem C, but also points to a paucity of primary data that are needed to determine the quantitative effects of invaders on ecosystem processes that drive C sequestration.  相似文献   
906.
Tree planting in the tropics is conducted for a number of reasons including carbon sequestration, but often competes with increasingly scarce water resources. The basics of forest and water relations are frequently said to be well understood but there is a pressing need to better understand and predict the hydrological effects of land‐use and climate change in the complex and dynamic landscapes of the tropics. This will remain elusive without the empirical data required to feed hydrological process models. It is argued that the current state of knowledge is confused by too broad a use of the terms ‘forest’ and ‘(af)forestation’, as well as by a bias towards using data generated mostly outside the tropics and for nondegraded soil conditions. Definitions of forest, afforestation and reforestation as used in the climate change community and their application by land and water managers need to be reconciled.  相似文献   
907.
Aim To evaluate the hypothesis that geomorphometric parameters of upper montane Andean environments have an important influence on the regional fire ecology and consequently play a role in the spatial distribution of ‘remnant’ tree islands dominated by Polylepis. Location A glacial landscape located between 3600 and 4400 m elevation in Cajas National Park, south‐western Ecuador. Methods The eigenvalue ratio method was used to evaluate the regional geomorphometric parameters of a 30‐m digital elevation model for Cajas National Park. The landscape character was evaluated by quantifying the topographic roughness, organization, and gradient. This information was used to determine the spatial correlations between terrain characteristics and the distribution of tree islands in the region. Results We demonstrate a strong spatial correlation between areas of high topographic roughness and gradient, and the locations of the major tree islands. We find that there is a distinctive relationship between the topographic roughness and organization in the vicinity of the tree islands (e.g. increased upslope roughness and decreased topographic grain strength) that substantiates the notion that the tree islands are located in relatively inaccessible topography. Main conclusions In the northern and central Andes, the location of Polylepis‐dominated ‘forest islands’ has been shown to be a function of climate, terrain characteristics, and anthropogenic disturbances. Although the relative importance of various ecological factors has been debated, it remains clear that fires have exerted a strong influence on these ecosystems. Other authors have noted that tree islands are more likely to occur at the base of cliffs, above moist areas, and in other areas where fires do not burn frequently. Our results corroborate these observations, and demonstrate that the occurrence of Polylepis patches is strongly correlated with specific combinations of terrain features. Although we do not discount the importance of other factors in determining the spatial position and areal extent of these forests, we demonstrate strong support for fire‐related hypotheses.  相似文献   
908.
Abstract.  1. Primary and logged lowland dipterocarp forest sites were sampled for subterranean termites using soil pits located on a grid system in order to detect any patchiness in their distribution.
2. A spatial pattern in termite distributions was observed in the primary and logged sites, but the response differed between soil-feeding and non-soil-feeding termites.
3. Spatial analysis showed that soil-feeding termites were homogeneously distributed in the primary forest but significantly aggregated in the logged forest. This pattern was reversed for non-soil-feeding termites and may result from differences in resource provisioning between the two sites.
4. Gaps in termite distribution comprised a greater area than patches for both feeding groups and sites, but gaps dominated the logged site.
5. A significant association between soil-feeding and non-soil-feeding termite distributions occurred at both sites. This arose from an association between patches in the primary forest and between gaps in the logged forest.
6. Termite spatial pattern was optimally observed at a minimum extent of 64 m and lag of 2 m.
7. The spatially explicit SADIE (Spatial Analysis by Distances IndicEs) analyses were more successful than (non-spatially explicit) multivariate analysis (Canonical Correspondence Analysis) at detecting associations between termite spatial distributions and that of other biotic and abiotic variables.  相似文献   
909.
Currently, it is unknown what role tropical forest soils will play in the future global carbon cycle under higher temperatures. Many tropical forests grow on deeply weathered soils and although it is generally accepted that soil carbon decomposition increases with higher temperatures, it is not known whether subsurface carbon pools are particularly responsive to increasing soil temperatures. Carbon dioxide (CO2) diffusing out of soils is an important flux in the global carbon. Although soil CO2 efflux has been the subject of many studies in recent years, it remains difficult to deduct controls of this flux because of the different sources that produce CO2 and because potential environmental controls like soil temperature and soil moisture often covary. Here, we report results of a 5‐year study in which we measured soil CO2 production on two deeply weathered soil types at different depths in an old‐growth tropical wet forest in Costa Rica. Three sites were developed on old river terraces (old alluvium) and the other three were developed on old lava flows (residual). Annual soil CO2 efflux varied between 2.8–3.6 μmol CO2‐C m?2 s?1 (old alluvium) and 3.4–3.9 μmol CO2‐C m?2 s?1 (residual). More than 75% of the CO2 was produced in the upper 0.5 m (including litter layer) and less than 7% originated from the soil below 1 m depth. This low contribution was explained by the lack of water stress in this tropical wet forest which has resulted in very low root biomass below 2 m depth. In the top 0.5 m CO2 production was positively correlated with both temperature and soil moisture; between 0.6 and 2 m depth CO2 production correlated negatively with soil moisture in one soil and positively with photosynthetically active radiation in the other soil type. Below 2 m soil CO2 production strongly increased with increasing temperature. In combination with reduced tree growth that has been shown for this ecosystem, this would be a strong positive feedback to ecosystem warming.  相似文献   
910.
ABSTRACT.   Data from roosts of Amazona parrots may be useful in creating demographic models, because these birds exhibit high roost fidelity and pairs are conspicuous in flight. However, few investigators have attempted to track changes in the number of pairs using such roosts. We studied Red-lored Amazons ( Amazona autumnalis ) at a communal roost in southwest Ecuador over a 1-yr period to understand better their population structure. Population size was estimated at 214 individuals. Counts revealed seasonal variation in numbers, but the occurrence of pairs and singles was seldom correlated. The number of paired individuals using the roost was lower during the breeding period. In contrast, the number of single birds at the roost nearly doubled during the breeding period. Overall, our data suggest that parental responsibilities during the nesting period explain fluctuations in the number of birds at the roost, and such fluctuations can be used to estimate the reproductive portion of the population. Protection of the small mangrove islands where the parrots roost would likely benefit a population that occupies a much larger area and would, at the same time, provide a useful tool for demographic studies of this poorly known neotropical parrot.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号