首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10716篇
  免费   825篇
  国内免费   1117篇
  2023年   141篇
  2022年   152篇
  2021年   272篇
  2020年   263篇
  2019年   297篇
  2018年   325篇
  2017年   300篇
  2016年   318篇
  2015年   339篇
  2014年   481篇
  2013年   740篇
  2012年   428篇
  2011年   399篇
  2010年   380篇
  2009年   421篇
  2008年   472篇
  2007年   544篇
  2006年   537篇
  2005年   470篇
  2004年   382篇
  2003年   489篇
  2002年   369篇
  2001年   337篇
  2000年   290篇
  1999年   310篇
  1998年   239篇
  1997年   254篇
  1996年   254篇
  1995年   239篇
  1994年   258篇
  1993年   257篇
  1992年   211篇
  1991年   197篇
  1990年   197篇
  1989年   171篇
  1988年   159篇
  1987年   125篇
  1986年   89篇
  1985年   99篇
  1984年   72篇
  1983年   45篇
  1982年   71篇
  1981年   49篇
  1980年   46篇
  1979年   37篇
  1978年   26篇
  1977年   18篇
  1976年   16篇
  1973年   20篇
  1972年   16篇
排序方式: 共有10000条查询结果,搜索用时 231 毫秒
51.
Restriction fragment length polymorphisms distinguish ectomycorrhizal fungi   总被引:5,自引:0,他引:5  
Basidiomycetous fungi, two saprophytes and three mycorrhizal, were used to assess the specificity of DNA hybridization for distinguishing genera from one another. Interspecific comparisons were done with several isolates of mycorrhizal fungi,Laccaria bicolor andL. laccata, collected from diverse geographical sites. The DNAs were digested with four restriction nucleases and separated by gel electrophoresis into patterns of DNA fragments called restriction fragment length polymorphisms (RFLPs). The RFLPs were hybridized with a radioactively-labeled DNA probe encoding Basidiomycetous ribosomal RNA genes. The five genera were discernable using both unprobed and probed RFLPs. Hybridization of probe DNA with RFLPs was isolate-specific for all nine Laccaria isolates examined. The reclassification of aL. bicolor isolate is supported, demonstrating that hybridization of RFLPs offers an additional tool for taxonomy of ectomycorrhizal fungi. The method may have field application for distinguishing known isolates if their DNA fingerprints are previously ascertained and are distinct from RFLPs of indigenous organisms.  相似文献   
52.
Two 2 m3 plots of soil were prepared to different water contents and each isolated from surrounding soil by impermeable plastic material. Nine sorghum varieties were germinated in the plots and allowed to grow without further watering. Time-to-wilt after emergence was measured, and several parameters relating to water flow of the seedling and nodal roots were determined. There was a good positive correlation between both seminal root and nodal root relative conductvity and time-to-wilt. In a second experiment, plants were germinated and grown in pots, and after two weeks of growth without further watering were inspected for survival in the unwilted state. The per cent survival was calculated. There was a negative correlation of seminal root relative conductivity with per cent survival, and a high negative correlation of the number of seminal roots with per cent survival. It is concluded that high relative conductivity indicates drought resistance if the plants are growing with less restricted roots as in open soil, while if the plants are grown in pots the reverse is the case. Experiments linking root conductivity with survival conducted in pots are poor predictors of performance in less restricted rooting conditions.  相似文献   
53.
Diurnal variation in ion content of the solution bathing roots of two plants growing together in sand culture was analysed for three pairs of grass-legume species (Lolium multiflorum andTrifolium pratense; Zea mays andGlycine hispida; Avena sativa andVicia sativa) and their monospecific controls. Biomass and nitrogen content of plants were determined. Ion concentration (NO 3 , NO 2 , NH 4 + , and K+) and pH of root solutions were measured for Lolium-Trifolium plant pairs and controls at 6 hours intervals over 36 h, starting at 8 am within a circadian cycle. Root solutions were regularly depleted in NO 3 by the grasses (Lolium-Lolium control) throughout the cycle. For associations involving the legume (Lolium-Trifolium and Trifolium-Trifolium), NO 3 depletion was followed by NO 3 enrichment at night, from late afternoon to early morning; the enrichment was more marked for the Lolium-Trifolium association. Solutions which did not contain NO 2 ions, were enriched by trace amounts of NH 4 + ions, largely depleted in K+ and alkalanized for all associations throughout the cycle. Repeating the experiment with the three pairs of species at the vegetative phase of development confirmed the previous results: NO 3 enrichment during the night for associations with legumes. When the experiment was repeated with older plants which had almost completed their flowering stage, depletion only was observed and no NO 3 enrichment. These data suggest that NO 3 enrichment results from N excretion from active nodulated roots of the legume, accounting for the increase in both biomass and nitrogen content of the companion grass in grass-legume association. The quantitative importance and periodicity of nitrogen excretion as well as the origin of nitrate enrichment are discussed.  相似文献   
54.
The stationary radial volume flows across maize (Zea mays L.) root segments without steles (sleeves) were measured under isobaric conditions. The driving force of the volume flow is an osmotic difference between the internal and external compartment of the root preparations. It is generated by differences in the concentrations of sucrose, raffinose or polyethylene glycol. The flows are linear functions of the corresponding osmotic differences ( ) up to osmotic values which cause plasmolysis. The straight lines obtained pass through the origin. No asymmetry of the osmotic barrier could be detected within the range of driving forces applied ( =±0.5 MPa), corresponding to volume-flow densities of jv, s=±7·10–8 m·s–1. Using the literature values for the reflection coefficients of sucrose and polyethylene glycol in intact roots (E. Steudle et al. (1987) Plant Physiol.84, 1220–1234), values for the sleeve hydraulic conductivity of about 1·10–7 m·s–1 MPa–1 were calculated. They are of the same order of magnitude as those reported in the literature for the hydraulic conductivity of intact root segments when hydrostatic pressure is applied.Abbreviations and symbols a s outer surface of sleeve segment - c concentration of osmotically active solute - j v, s radial volume flow density across sleeve segment - Lps hydraulic conductivity of sleeves - Lpr hydraulic conductivity of intact roots - N thickness of Nernst diffusion layer - reflection coefficient of root for solute - osmotic value of bulk phase - osmotic coefficient  相似文献   
55.
When young wheat (Triticum aestivum L.) or barley (Hordeum vulgare L.) plants were deprived of an external sulphate supply (-S plants), the capacity of their roots to absorb sulphate, but not phosphate or potassium, increased rapidly (derepression) so that after 3–5 d it was more than tenfold that of sulphate-sufficient plants (+S plants). This increased capacity was lost rapidly (repression) over a 24-h period when the sulphate supply was restored. There was little effect on the uptake of L-methionine during de-repression of the sulphate-transport system, but S input from methionine during a 24-h pretreatment repressed sulphate influx in both+S and-S plants.Sulphate influx of both+S and-S plants was inhibited by pretreating roots for 1 h with 4,4-diisothiocyanatostilbene-2,2-disulphonic acid (DIDS) at concentrations > 0.1 mol · m-3. This inhibition was substantially reversed by washing for 1 h in DIDS-free medium before measuring influx. Longer-term pretreatment of roots with 0.1 mol·m-3 DIDS delayed de-repression of the sulphatetransport system in-S plants but had no influence on+S plants in 3 d.The sulphydryl-binding reagent, n-ethylmaleimide, was a very potent inhibitor of sulphate influx in-S roots, but was much less inhibitory in +S roots. Its effects were essentially irreversible and were proportionately the same at all sulphate concentrations within the range of operation of the high-affinity sulphate-transport system. Inhibition of influx was 85–96% by 300 s pretreatment by 0.3 mol·m-3 n-ethylmaleimide. No protection of the transport system could be observed by including up to 50 mol·m-3 sulphate in the n-ethylmaleimide pre-treatment solution. A similar differential sensitivity of-S and+S plants was seen with p-chloromercuriphenyl sulphonic acid.The arginyl-binding reagent, phenylglyoxal, supplied to roots at 0.25 or 1 mol·m-3 strongly inhibited influx in-S wheat plants (by up to 95%) but reduced influx by only one-half in+S plants. The inhibition of sulphate influx in-S plants was much greater than that of phosphate influx and could not be prevented by relatively high (100 mol·m-3 sulphate concentrations accompanying phenylglyoxal treatment. Effects of phenylglyoxal pretreatment were unchanged for at least 30 min after its removal from the solution but thereafter the capacity for sulphate influx was restored. The amount of new carrier appearing in-S roots was far greater than in+S roots over a 24-h period.The results indicate that, in the de-repressed state, the sulphate transporter is more sensitive to reagents binding sulphydryl and arginyl residues. This suggests a number of strategies for identifying the proteins involved in sulphate transport.Abbreviations DIDS 4,4-diisothiocyanatostilbene-2,2-disulphonic acid - NEM n-ethylmaleimide - PCMBS p-chloromercuriphenyl sulphonic acid  相似文献   
56.
The effect of HCO 3 - on ion absorption by young corn roots was studied in conditions allowing the independent control of both the pH of uptake solution and the CO2 partial pressure in air bubbled through the solution. The surface pH shift in the vicinity of the outer surface of the plasmalemma induced by active H+ excretion was estimated using the initial uptake rate of acetic acid as a pH probe (Sentenac and Grignon (1987) Plant Physiol. 84, 1367). Acetic acid and orthophosphate uptake rates and NO 3 - accumulation were slowed down, while 86Rb+ uptake and K+ accumulation rates were increased by HCO 3 - . These effects were similar to those induced by 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid/2-amino-2-(hydroxymethyl)-1,3-propanediol (Hepes-Tris). They were more pronounced when the H+ excretion was strong, were rapidly reversible and were not additive to those of Hepes-Tris. The hypothesis is advanced that the buffering system CO2/H2CO3/HCO 3 - accelerated the diffusion of equivalent H+ inside the cell wall towards the medium. This attenuated the surface pH shift in the vicinity the plasma membrane and affected the coupling between the proton pump and cotransport systems.Abbreviations FW fresh weight - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Jaa acetic acid influx - JK + K+ influx - JPi orthophosphate influx - Mes 2-(N-morpholino)ethanesulfonic acid - pCO2 CO2 partial pressure - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   
57.
Summary The structure and organization of the ribosomal DNA (rDNA) of sorghum (Sorghum bicolor) and several closely related grasses were determined by gel blot hybridization to cloned maize rDNA. Monocots of the genus Sorghum (sorghum, shattercane, Sudangrass, and Johnsongrass) and the genus Saccharum (sugarcane species) were observed to organize their rDNA as direct tandem repeats of several thousand rDNA monomer units. For the eight restriction enzymes and 14 cleavage sites examined, no variations were seen within all of the S. bicolor races and other Sorghum species investigated. Sorghum, maize, and sugarcane were observed to have very similar rDNA monomer sizes and restriction maps, befitting their close common ancestry. The restriction site variability seen between these three genera demonstrated that sorghum and sugarcane are more closely related to each other than either is to maize. Variation in rDNA monomer lengths were observed frequently within the Sorghum genus. These size variations were localized to the intergenic spacer region of the rDNA monomer. Unlike many maize inbreds, all inbred Sorghum diploids were found to contain only one rDNA monomer size in an individual plant. These results are discussed in light of the comparative timing, rates, and modes of evolutionary events in Sorghum and other grasses. Spacer size variation was found to provide a highly sensitive assay for the genetic contribution of different S. bicolor races and other Sorghum species to a Sorghum population.  相似文献   
58.
Abstract. White lupin ( Lupinus albus L.) was grown for 13 weeks in a phosphorus (P) deficient calcareous soil (20% CaCO3, pH(H2O)7.5) which had been sterilized prior to planting and fertilized with nitrate as source of nitrogen. In response to P deficiency, proteoid roots developed which accounted for about 50% of the root dry weight. In the rhizosphere soil of the proteoid root zones, the pH dropped to 4.8 and abundant white precipitates became visible. X-ray spectroscopy and chemical analysis showed that these precipitates consisted of calcium citrate. The amount of citrate released as root exudate by 13-week-old plants was about 1 g plant−1, representing about 23% of the total plant dry weight at harvest. In the rhizosphere soil of the proteoid root zones the concentrations of available P decreased and of available Fe, Mn and Zn increased. The strong acidification of the rhizosphere and the cation/anion uptake ratio of the plants strongly suggests that proteoid roots of white lupin excrete citric acid, rather than citrate, into the rhizosphere leading to intensive chemical extraction of a limited soil volume. In a calcareous soil, citric acid excretion leads to dissolution of CaCO3 and precipitation of calcium citrate in the zone of proteoid roots.  相似文献   
59.
Studies were performed to define tissue culture techniques and culture conditions for morphogenesis, callus culture and plantlet culture of sweet orange (Citrus sinensis (L.) Osb.), citron (C. medica L.) and lime (C. aurantifolia) (Christm. Swing). The optimal concentrations of NAA to induce root formation on stem segments were 10 mg l-1 for sweet orange and lime, and 3 mg l-1 for citron. The optimal BA concentration for shoot and bud proliferation was 3 mg l-1 for sweet orange and citron, and 1 mg l-1 for lime. Callus initiation was accomplished in a culture medium containing 10 mg l-1 NAA and 0.25 mg l-1 BA. Callus was maintained by periodical subculture into the same medium supplemented with 10% (v:v) organge juice. In vitro plantlets of the three species were obtained by rooting of shoots developed from bud cultures, and of citron and lime by development of shoots from root cultures. The plants were successfully established on soil.  相似文献   
60.
Benthic algal biomass and productivity in high subarctic streams,Alaska   总被引:2,自引:2,他引:0  
Year-round measurements of the standing crop of epilithic algae (as chlorophyll a concentration) in two streams — one second and one fourth order (map scale 1:63 360) — in interior Alaska (64°–65° N) were only about one tenth that reported from streams of temperate North America. Cell densities in these streams, however, were similar to those in comparable temperate streams. Year-round domination of the benthic flora by very tiny diatoms (Achnanthes spp.) may explain the apparent disparity between low chlorophyll a content and nearly average cell densities. Chlorophyll a standing crop in a more alkaline groundwater-fed stream, however, was higher and within the range of similarly sized temperate streams. Maximum chlorophyll a standing crop varied positively with alkalinity in 5 clear-water streams where standing crop was measured on natural or artificial substrates. Seasonal mean concentrations of sestonic chlorophyll a (used as estimates of benthic algal chlorophyll a standing crop) varied directly and significantly with alkalinity among ten clear-water streams; and, with total phosphorus among 8 of 10 clear-water and 5 brown-water streams studied. During the summer, when there is little darkness, gross primary productivity (as estimated by the diurnal dissolved-oxygen method) was similar to that of northern temperate streams. Gross primary productivity was also seen to vary directly with alkalinity in 5 clear-water streams of this region.U.S. Fish and Wildlife Service  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号