首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   14篇
  国内免费   2篇
  2023年   1篇
  2022年   3篇
  2021年   19篇
  2020年   10篇
  2019年   11篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   5篇
  2014年   12篇
  2013年   16篇
  2012年   9篇
  2011年   8篇
  2010年   8篇
  2009年   9篇
  2008年   7篇
  2007年   7篇
  2006年   4篇
  2005年   8篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1994年   4篇
  1993年   1篇
  1989年   2篇
  1988年   1篇
  1984年   1篇
  1978年   1篇
排序方式: 共有177条查询结果,搜索用时 16 毫秒
71.
Serum and urine analytes were compared between adult wild-caught and adult colony-born owl monkeys (Aotus nancymae), to determine if normative clinical pathology data were similar. Significant differences (P ≤ 0.05) were noted in serum protein, glucose, sodium, urine calcium, calcium clearance, and fractional clearance of calcium between the two groups. The results suggest that reference data for feral owl monkeys is not completely applicable to colony-born animals, however, the differences are too small to be of clinical significance.  相似文献   
72.
Many mammals in Australia's tropical north are in severe decline, yet understanding of the drivers of this decline is remarkably limited. Recently, Fisher et al. (Global Ecology and Biogeography, 2014, 23 , 181?190) examined the traits that are associated with declining marsupial species in northern Australia. They concluded that, in this region, declines are most pronounced in the smallest species (those with the lowest body mass). This is in strong contrast to the significant declines that occurred earlier in central and southern Australia before the mid 20th century, which were most pronounced in medium‐sized species, the so‐called ‘critical weight range’ (35?5500 g). Here we show that Fisher et al. have misinterpreted their dataset; in northern Australia, the pattern of mammal decline in relation to body mass is remarkably similar to that in central and southern Australia, with mammal decline strongly concentrated in the critical weight range, suggesting fundamentally similar drivers between north and south.  相似文献   
73.
Artificially selected qualities can reduce fitness in a wild setting, thus feral domesticates should experience strong selective forces. Domestic sheep Ovis aries have frequently become feral on islands, which differ substantially from mainland environments. We examined changes in body mass and wool traits in feral sheep inhabiting Santa Cruz Island (SCI), California for ≥90 years. To elucidate the influence of nutrition, we compared the mass of feral island sheep with that of island sheep raised in farm conditions. We found that feral sheep on SCI were smaller than purported founder breeds, and that most documented populations of insular feral sheep worldwide have converged to similar body sizes (within 6 kg). SCI rams attained greater mass in farm conditions but ewes did not, suggesting phenotypic plasticity in ram body mass. Ewes exhibited self-shedding of wool at a greater frequency than rams, and sex differences and shedding patterns were consistent with thermoregulation and the risk of fly strike disease as benefits of wool loss. Pigmentation rates did not increase, further supporting the influence of heat stress on wool traits. These changes occurred in <25 generations and may have had a genetic basis, representing a potential example of rapid evolution in insular feral sheep.  相似文献   
74.
75.
Invasive species that increase prevailing disturbance regimes can profoundly alter the composition and structure of ecosystems they invade. Using both comparative and manipulative approaches, we investigated how native and exotic vegetation and soil characteristics at a coastal grassland site in northern California changed through time following disturbances by feral pigs (Sus scrofa). We quantified these successional changes by comparing pig disturbances of varying ages (2, 14, 26+, and 60+ months) during the spring and early summer of 2001. Our results indicate that species richness of native plants increased slowly but steadily through time following disturbances, whereas richness of exotic species rebounded much more rapidly. Percent cover of native perennial grasses also increased steadily through time after pig disturbance, whereas the cover of exotic perennial grasses, annual grasses and forbs initially increased rapidly after disturbance and then remained the same or subsided slightly with time. The cover of native forbs and bulbs either increased weakly through time following disturbance or did not change substantially. Pools of ammonium and nitrate in the soil did not change greatly through time following pig disturbance. Net mineralization rates for ammonium and nitrate also varied little with age since disturbance, although we did find that nitrate mineralization was greater at intermediate ages in one study. Neither organic matter content or particle size varied significantly with disturbance age. In summary, we have shown that native and exotic plants from different functional groups vary greatly in how they recovered from pig disturbances. Exotic taxa were generally able to rapidly colonize and persist in pig disturbances, whereas native taxa usually exhibited a slow but steady rebounding following pig disturbance. Given our results, and those of others from nearby sites, we suggest that the health of coastal grasslands may be enhanced substantially by eliminating or greatly reducing the size of feral pig populations.  相似文献   
76.
Apex predators can limit the abundance and behaviour of mesopredators, thereby reducing predation on smaller species. We know less about whether native apex predators are effective in suppressing invasive mesopredators, a major global driver of vertebrate extinctions. We use the severe disease‐induced decline of an apex predator, the Tasmanian devil, as a natural experiment to test whether devils limit abundance of invasive feral cats and in turn protect smaller native prey. Cat abundance was c. 58% higher where devils had declined, which in turn negatively affected a smaller native prey species. Devils had a stronger limiting effect on cats than on a native mesopredator, suggesting apex predators may have stronger suppressive effects on evolutionarily naive species than coevolved species. Our results highlight how disease in one species can affect the broader ecosystem. We show that apex predators not only regulate native species but can also confer resistance to the impacts of invasive populations. Apex predators could therefore be a powerful but underutilised tool to prevent biodiversity loss.  相似文献   
77.
Feral populations of domesticated crops can establish through two nonmutually exclusive pathways: hybridization with native relatives and recruitment of and recombination between known cultivars. The extent and relative importance of these pathways is not known, especially for woody fruit crops. Here, we examined the evolutionary origins of feral populations of Malus domestica (domestic apple) in southern Canada using a population genetic analysis. We characterized genotypes of 578 putative feral apple trees and evaluated them in relation to genotypes of 156 commercial cultivars, 28 non‐native, ornamental crabapples and 47 native Malus coronaria trees using 14 microsatellite markers. No feral trees were genetic admixtures between domestic and native Malus; however, a minority of trees were admixed with introduced ornamental Malus. Feral trees and commercial cultivars both occurred in two major genetic groups and seven subgroups distributed throughout all commercial growing regions. A total of 42 cultivars, both heritage and currently grown, occurred in probable parental pairs for feral trees, with nine heritage varieties accounting for 72% of parental assignments. We conclude that feral apples in southern Canada are not products of hybridization with native M. coronaria but we cannot exclude ornamental apple species as contributing to the naturalization process. Nonhybrid feral domestic apples have multiple origins, with a prominent signature of early heritage cultivars. These lineages have spread and coexist throughout Ontario, rather than being derived strictly from local sources.  相似文献   
78.
Invasive alien species are a significant threat to both economic and ecological systems. Identifying the processes that give rise to invasive populations is essential for implementing effective control strategies. We conducted an ancestry analysis of invasive feral swine (Sus scrofa, Linnaeus, 1758), a highly destructive ungulate that is widely distributed throughout the contiguous United States, to describe introduction pathways, sources of newly emergent populations and processes contributing to an ongoing invasion. Comparisons of high‐density single nucleotide polymorphism genotypes for 6,566 invasive feral swine to a comprehensive reference set of S. scrofa revealed that the vast majority of feral swine were of mixed ancestry, with dominant genetic associations to Western heritage breeds of domestic pig and European populations of wild boar. Further, the rapid expansion of invasive feral swine over the past 30 years was attributable to secondary introductions from established populations of admixed ancestry as opposed to direct introductions of domestic breeds or wild boar. Spatially widespread genetic associations of invasive feral swine to European wild boar deviated strongly from historical S. scrofa introduction pressure, which was largely restricted to domestic pigs with infrequent, localized wild boar releases. The deviation between historical introduction pressure and contemporary genetic ancestry suggests wild boar‐hybridization may contribute to differential fitness in the environment and heightened invasive potential for individuals of admixed domestic pig–wild boar ancestry.  相似文献   
79.
Feral horse (Equus ferus caballus) populations on public rangelands in the western United States threaten forage production for livestock and wildlife habitat. Interference competition between feral horses and heterospecifics at watering sources can have negative effects on livestock and wildlife. Researchers have documented altered timing and behavior of wild ungulates at water sources when horses were present. The few studies examining these interactions have infrequently occurred within areas specifically managed for feral equids and have not occurred in sites with cattle. We used motion-sensitive cameras at 8 watering sources to document watering activity patterns and construct indices of temporal overlap among feral horses, cattle, elk (Cervus canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana) within the Adobe Town Herd Management Area in southern Wyoming, USA, between June and September 2018 and 2019. Feral horses, cattle, and pronghorn exhibited a high degree of temporal overlap (>79%) in water use, with feral horses and pronghorn exhibiting the highest estimated percent overlap (88.1%, 95% CI = 86.5–89.6%). Mule deer and elk watering activity also overlapped with horses and cattle but to a lesser degree (<55%). Feral horses spent a mean of 16.7 ± 30.5 (SD) minutes during a watering event and were present at a given water source on average 4.5 ± 6.3% and up to 34.9% of the day, which is less than reported in previous studies. Cattle spent on average 23.5 ± 44.9 minutes during a watering event, and were present on average 4.2 ± 7.7% and up to 42.4% of the day at a single water source. Results of generalized linear mixed-effects models indicated that number of conspecifics was the strongest predictor of visit duration for pronghorn and horses; hour of the day and group size of heterospecifics were informative, but less important, variables. There was no difference in peak visitation time for any species between sites of high versus low horse or cattle use. Despite temporal overlap, we did not find evidence of interference competition between feral horses, cattle, and pronghorn. We recommend future examination of interference competition and its biological consequences between introduced and native ungulates at water sources of varying size across sites, equid population levels, and livestock stocking rates. © 2020 The Wildlife Society.  相似文献   
80.
Feral horses (Equus ferus caballus) in the western United States are managed by the Bureau of Land Management (BLM) and United States Forest Service in designated areas on public lands with a goal of maintaining populations in balance with multiple uses of the landscape. Small, isolated populations can be at risk of extirpation from stochastic events and deleterious genetic effects resulting from inbreeding and reduced heterozygosity. The genetic diversity of feral horse herds is periodically monitored using blood or hair samples collected during management gathers (i.e., occasions when the herd is rounded up). We conducted a study to examine genetic characteristics of the feral horse population at the BLM Little Book Cliffs Herd Management Area (HMA) in Colorado, USA, using non-invasively collected fecal samples. Additionally, we explored whether genotypes could be used to document space use and potential sub-population development. We used a random sampling scheme, walking transects in sampling areas covering most of the HMA to find and collect fecal samples of all ages, except those that were deteriorating. We collected >1,800 fecal samples from across the study area in May, August, and October 2014. We then identified unique individuals using a suite of microsatellite loci. Our estimates of genetic diversity from fecal samples were higher than those reported from blood and hair samples taken during recent horse gathers, likely because our sample size and spatial distribution was larger. Genotypes revealed that some individuals were found only in certain parts of the study area and at a higher proportion than random; thus, they could be considered residents in those sampling areas. Using discriminant function analyses, we detected 5 genetic groups in the sample population, but these did not correspond to individuals in specific parts of the study area. Our results support the use of fecal DNA to augment direct observations of horse presence and could be used to detect habitat use and areas of high density. Non-invasive techniques such as fecal DNA sampling can help managers decide whether new individuals need to be translocated to a closed population to maintain genetic diversity without the human safety and animal welfare concerns associated with gathers and invasive techniques. © 2021 The Wildlife Society.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号