首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1390篇
  免费   59篇
  国内免费   131篇
  2024年   2篇
  2023年   15篇
  2022年   19篇
  2021年   30篇
  2020年   32篇
  2019年   25篇
  2018年   38篇
  2017年   27篇
  2016年   31篇
  2015年   35篇
  2014年   78篇
  2013年   93篇
  2012年   81篇
  2011年   79篇
  2010年   47篇
  2009年   67篇
  2008年   66篇
  2007年   72篇
  2006年   79篇
  2005年   59篇
  2004年   47篇
  2003年   38篇
  2002年   61篇
  2001年   43篇
  2000年   43篇
  1999年   33篇
  1998年   36篇
  1997年   40篇
  1996年   37篇
  1995年   32篇
  1994年   14篇
  1993年   16篇
  1992年   24篇
  1991年   18篇
  1990年   16篇
  1989年   10篇
  1988年   16篇
  1987年   14篇
  1986年   11篇
  1985年   17篇
  1984年   7篇
  1983年   3篇
  1982年   12篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1974年   3篇
排序方式: 共有1580条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
Chlorophyll is the most abundant pigment on earth and even though it is known that its high photo-excitability necessitates a tight regulation of its degradation pathway, to date there are still several steps in chlorophyll breakdown that remain obscure. In order to better understand the ‘degreening’ processes that accompany leaf senescence and fruit ripening, we characterized the enzyme-encoding genes involved in dephytylation from tomato (Solanum lycopersicum). A single pheophytinase (PPH) gene and four chlorophyllase (CLH) genes were identified in the tomato genome. A phenetic analysis revealed two groups of CLHs in eudicot species and further evolutionary analysis indicated that these enzymes are under diverse selection pressures. A comprehensive expression profile analysis also suggested functional specificity for these dephytylating enzymes. The integrated analysis allows us to propose three general roles for chlorophyll dephytylation: i) PPH, which is under high selective constraint, is responsible for chlorophyll degradation during developmentally programed physiological processes; ii) Group I CLHs, which are under relaxed selection constraint, respond to environmental and hormonal stimuli and play a role in plant adaptation plasticity; and iii) Group II CLHs, which are also under high selective constraint, are mostly involved in chlorophyll recycling.  相似文献   
995.
996.
997.
Despite numerous studies on shrunken endosperm mutants caused by either maternal tissues (seg) or kernel per se (sex) in barley, the molecular mechanism for all of the eight seg mutants (seg1–seg8) and some sex mutants is yet to be uncovered. In this study, we determined the amylose content, characterized granule-binding proteins, analyzed the expression of key genes involved in starch synthesis, and examined starch granule structure of both normal (Bowman and Morex) and shrunken endosperm (seg1, seg3, seg4a, seg4b, seg5, seg6, seg7, and sex1) barley accessions. Our results showed that amylose contents of shrunken endosperm mutants ranged from 8.9% (seg4a) to 25.8% (seg1). SDS-PAGE analysis revealed that 87 kDa proteins corresponding to the starch branching enzyme II (SBEII) and starch synthase II (SSII) were not present in seg1, seg3, seg6, and seg7 mutants. Real-time quantitative PCR (RT-qPCR) analysis indicated that waxy expression levels of seg1, seg3, seg6, and seg7 mutants decreased in varying degrees to lower levels until 27 days after anthesis (DAA) after reaching the peak at 15–21 DAA, which differed from the pattern of normal barley accessions. Further characterization of waxy alleles revealed 7 non-synonymous single nucleotide polymorphisms (SNPs) in the coding sequences and 16 SNPs and 8 indels in the promoter sequences of the mutants. Results from starch granule by scanning electron microscopy (SEM) indicated that, in comparison with normal barley accessions, seg4a, seg4b, and sex1 had fewer starch granules per grain; seg3 and seg6 had less small B-type granules; some large A-type granules in seg7 had a hollow surface. These results improve our understanding about effects of seg and sex mutants on starch biosynthesis and granule structure during endosperm development and provide information for identification of key genes responsible for these shrunken endosperm mutants.  相似文献   
998.
Chitin synthase (CHS) is the key regulatory enzyme in chitin synthesis and excretion in insects, and a specific target of insecticides. We cloned a CHS B gene of Bombyx mori (BmChsB) and showed it to be midgut specific, highly expressed during the feeding process in the larva. Knockdown of BmChsB expression in the third‐instar larvae increased the number of nonmolting and abnormally molting larvae. Exposure to nikkomycin Z, a CHS inhibitor, reduced the amount of chitin in the peritrophic membrane of molted larvae, whereas abnormally elevated BmChsB mRNA levels were readily detected from the end of molting and in the newly molted larvae. Exogenous 20‐hydroxyecdysone (20E) and methoprene, a juvenile hormone analogue, significantly upregulated the expression of BmChsB when the levels of endogenous molting hormone (MH) were low and the levels of endogenous juvenile hormone (JH) were high immediately after molting. When levels of endogenous MH were high and those of endogenous JH were low during the molting stage, exogenous 20E did not upregulate BmChsB expression and exogenous methoprene upregulated it negligibly. When the endogenous hormone levels were low during the mulberry‐leaf intake process, BmChsB expression was upregulated by exogenous methoprene. We conclude that the expression of BmChsB is regulated by insect hormones, and directly affects the chitin‐synthesis‐dependent form of the peritrophic membrane and protects the food intake and molting process of silkworm larvae.  相似文献   
999.
3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2′-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dGC8-N-ABA is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dGC8-N-ABA on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dGC8-N-ABA lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dGC8-N-ABA lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dGC8-N-ABA bypass catalyzed by Dpo4.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号