首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6164篇
  免费   314篇
  国内免费   156篇
  2024年   4篇
  2023年   74篇
  2022年   80篇
  2021年   142篇
  2020年   126篇
  2019年   182篇
  2018年   168篇
  2017年   135篇
  2016年   114篇
  2015年   167篇
  2014年   212篇
  2013年   375篇
  2012年   194篇
  2011年   205篇
  2010年   136篇
  2009年   185篇
  2008年   204篇
  2007年   253篇
  2006年   260篇
  2005年   276篇
  2004年   259篇
  2003年   245篇
  2002年   253篇
  2001年   212篇
  2000年   185篇
  1999年   141篇
  1998年   167篇
  1997年   178篇
  1996年   155篇
  1995年   137篇
  1994年   133篇
  1993年   136篇
  1992年   112篇
  1991年   107篇
  1990年   107篇
  1989年   117篇
  1988年   86篇
  1987年   67篇
  1986年   54篇
  1985年   71篇
  1984年   46篇
  1983年   22篇
  1982年   38篇
  1981年   26篇
  1980年   25篇
  1979年   22篇
  1978年   11篇
  1977年   10篇
  1976年   9篇
  1973年   5篇
排序方式: 共有6634条查询结果,搜索用时 15 毫秒
131.
Mouse egg activation, which includes release from meiotic metaphase II arrest, results from fertilization-induced increase in intracellular calcium concentration ([Ca2+]i). However, during egg activation caused by exposure to the protein synthesis inhibitor, cycloheximide, [Ca2+]i did not change. Although eggs fertilized in the presence of microtubule inhibitors remain arrested at metaphase, eggs treated for 32 hr with cycloheximide and the microtubule inhibitor, colcemid, formed nuclei. In untreated eggs aged in culture for 24 hr, the microtubule spindles became deformed. These eggs formed nuclei after exposure to cycloheximide, but not the calcium ionophore A23187. Our results indicate that eggs in which protein synthesis is inhibited are released from metaphase without an increase in [Ca2+]i, and despite disruption of the Spindle. © 1995 Wiley-Liss, Inc.  相似文献   
132.
Summary 1. We examined the actions of mercury (Hg2+) and zinc (Zn2+) on voltage-activated calcium channel currents of cultured rat dorsal root ganglion (DRG) neurons, using the whole-cell patch clamp technique.2. Micromolar concentrations of both cations reduced voltage-activated calcium channel currents. Calcium channel currents elicited by voltage jumps from a holding potential of –80 to 0 mV (mainly L- and N-currents) were reduced by Hg2+ and Zn2+. The threshold concentration for Hg2+ effects was 0.1 µM and that for Zn2+ was 10µM. Voltage-activated calcium channel currents were abolished (>80%) with 5µM Hg2+ or 200µM Zn2+. The peak calcium current was reduced to 50% (IC50) by 1.1µM Hg2+ or 69µM Zn2+. While Zn2+ was much more effective in reducing the T-type calcium channel current—activated by jumping from –80 to –35 mV—Hg2+ showed some increased effectiveness in reducing this current.3. The effects of both cations occurred rapidly and a steady state was reached within 1–3 min. While the action of Zn2+ was not dependent on an open channel state, Hg2+ effects depended partially on channel activation.4. While both metal cations reduced the calcium channel currents over the whole voltage range, some charge screening effects were detected with Hg2+ and with higher concentrations (>100µM) of Zn2+.5. As Zn2+ in the concentration range used had no influence on resting membrane currents, Hg2+ caused a clear inward current at concentrations µM.6. In the present study we discuss whether the actions of both metals on voltage-activated calcium channel currents are mediated through the same binding site and how they may be related to their neurotoxic effects.  相似文献   
133.
In the measurement of total lipid-bound sialic acids involving periodic acid oxidation, as in the periodate-resorcinol assay, the inner sialic acids of disialoglycolipids (such as GD3 and GD2) are not involved because their 2,8 ketosidic linkages are resistant to periodic acid oxidation, even after acid/enzyme hydrolysis or alkali pretreatment. However, the sialic acids from these glycolipids can be recovered completely after cleavage of 2,8 linkages byV. cholerae sialidase in the presence of cholic acid, sodium dodecyl sulphate and calcium. Interestingly, removal of calcium or detergent(s) or both significantly minimizes the sialidase action on the disialyl residues of these gangliosides. Therefore, we recommend sialidase (Vibrio cholerae) pretreatment of the glycolipids in the presence of cholic acid, SDS and Ca2+ for complete recovery of sialic acids from di- and polysialogangliosides and for accurate measurement of total lipid-bound sialic acids by periodate-resorcinol assay.Presented at the Second International Glycobiology Symposium which was held in San Francisco, CA, USA (14 February 1994).  相似文献   
134.
The role of the primary amino groups of lysine sidechains in Ca2+ binding to calreticulin was evaluated by chemical modification of the amino group with 2,4,6-trinitrobenzenesulfonic acid (TNBS). TNBS binding to calreticulin could be described by two steps: (i) a fast reaction, with low affinity, and (ii) a slow reaction with a relatively high affinity. Inclusion of Ca2+ and/or Mg2+ decreased both the amount of TNBS bound to calreticulin and the apparent affinity constant of the slower reaction. In contrast, the properties of the faster reaction for TNBS binding were not sensitive to Ca2+ and/or Mg2+. Analysis of TNBS binding to the carboxyl-terminal (C-domain) and aminoterminal (N-domain) of calreticulin revealed that theC-domain andN-domain are responsible for the slow and fast component of the TNBS binding, respectively. In keeping with this, in the presence of Ca2+, TNBS binding to theC-domain was significantly reduced, whereas modification of theN-domain was unaffected. TNBS modification of calreticulin significantly decreased Ca2+ binding to the low affinity/high capacity Ca2+ binding site(s) which are localized to theC-domain but had no effect on the high affinity/low capacity Ca2+ binding localized to theN-domain.In theC-domain of calreticulin, which contains the low affinity/high capacity Ca2+ binding sites, acidic residues are interspersed at regular intervals with one or more positively charged lysine and arginine residues. Our results indicate that the aminogroups of the lysine sidechains in theC-domain of calreticulin have a role in the low affinity/high capacity Ca2+ binding that is characteristic of this region of the protein and which is proposed to contribute significantly to the capacity of the endoplasmic reticulum Ca2+ store. (Mol Cell Biochem130: 19–28, 1994)Abbreviations TNBS 2,4,6-Trinitrobenzenesulfonic Acid - GST Glutathione S-Transferase - SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis - EDTA Ethylenediaminetetraacetic Acid - EGTA Ethylene Glycol bis(-aminoethylether)-N,N,N,N-tetraacetic Acid - MOPS 4-Morpholinepropanesulfonic Acid  相似文献   
135.
Calcium has long been known to play a role as a key cytoplasmic second messenger, but until relatively recently its possible involvement in nuclear signal transduction and the regulation of nuclear events has not been extensively studied. Evidence revealing the presence of transmembrane nuclear Ca2+ gradients and a variety of intranuclear Ca2+ binding proteins has fueled renewed interest in this key ion and its involvement in cell-cycle timing and division, gene expression, and protein activation. This review will offer an overview of the current state of knowledge and theory regarding calcium orchestration of nuclear functions and events and discuss possible future directions in this field of study.  相似文献   
136.
Calsequestrin is the major Ca2+-binding protein localized in the terminal cisternae of the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle cells. Calsequestrin has been purified and cloned from both skeletal and cardiac muscle in mammalian, amphibian, and avian species. Two different calsequestrin gene products namely cardiac and fast have been identified. Fast and cardiac calsequestrin isoforms have a highly acidic amino acid composition. The amino acid composition of the cardiac form is very similar to the skeletal form except for the carboxyl terminal region of the protein which possess variable length of acidic residues and two phosphorylation sites. Circular dichroism and NMR studies have shown that calsequestrin increases its -helical content and the intrinsic fluorescence upon binding of Ca2+. Calsequestrin binds Ca2+ with high-capacity and with moderate affinity and it functions as a Ca2+ storage protein in the lumen of the SR. Calsequestrin has been found to be associated with the Ca2+ release channel protein complex of the SR through protein-protein interactions. The human and rabbit fast calsequestrin genes have been cloned. The fast gene is skeletal muscle specific and transcribed at different rates in fast and slow skeletal muscle but not in cardiac muscle. We have recently cloned the rabbit cardiac calsequestrin gene. Heart expresses exclusively the cardiac calsquestrin gene. This gene is also expressed in slow skeletal muscle. No change in calsequestrin mRNA expression has been detected in animal models of cardiac hypertrophy and in failing human heart.  相似文献   
137.
NAD glycohydrolases are the longest known enzymes that catalyze ADP-ribose transfer. The function of these ubiquitous, membrane-bound enzymes has been a long standing puzzle. The NAD glycohydrolase are briefly reviewed in light of the discovery by our laboratory that NAD glycohydrolases are bifunctional enzymes that can catalyze both the synthesis and hydrolysis of cyclic ADP-ribose, a putative second messenger of calcium homeostasis.Abbreviations NADase nicotinamide adenine dinucleotide glycohydrolase - NAD nicotinamide adenine dinucleotide - ADP-ribose adenosine diphosphoribose - cADPR cyclic adenosine diphosphoribose  相似文献   
138.
The effects of lead on Ca2+ homeostasis in nerve terminals was studied. Incubation with leadin vitro stimulated the activity of calmodulin and the maximum effect was observed at 30 M lead, higher concentrations had an inhibitory effect.In vivo exposure to lead increased the activity of calmodulin by 45%. Lead had an inhibitory effect on Ca2+ ATPase activity in both calmodulin-rich and calmodulin-depleted synaptic plasma membranes, the IC50 values for inhibition being 13.34 and 16.69 M respectively. Exogenous addition of calmodulin (5 g) and glutathione (1 mM) to calmodulin rich synaptic plasma membranes reversed the inhibition by IC50 concentration of lead.In vivo exposure of lead also significantly reduced the Ca2+ ATPase activity, resulting in an increase in intrasynaptosomal calcium. Concomitant with the increase in intrasynaptosomal calcium, lipid peroxidation values also increased significantly in lead-treated animals. In addition lead also had an inhibitory effect on depolarization induced Ca2+ uptake and the inhibition was found to be a competitive one. The results sugest that lead exerts its toxic effects by modifications of the intracellular calcium messenger system which would have serious consequences on neuronal functioning.  相似文献   
139.
Adenylate cyclase activity measured by the formation of cyclic AMP in rat brain membranes was inhibited by a shellfish toxin, domoic acid (DOM). The inhibition of enzyme was dependent on DOM concentration, but about 50% of enzyme activity was resistant to DOM-induced inhibition. Rat brain supernatant resulting from 105,000×g centrifugation for 60 min, stimulated adenylate cyclase activity in membranes. Domoic acid abolished the supernatant-stimulated adenylate cyclase activity. The brain supernatant contains factors which modulate adenylate cyclase activity in membranes. The stimulatory factors include calcium, calmodulin, and GTP. In view of these findings, we examined the role of calcium and calmodulin in DOM-induced inhibition of adenylate cyclase in brain membranes. Calcium stimulated adenylate cyclase activity in membranes, and further addition of calmodulin potentiated calcium-stimulated enzyme activity in a concentration dependent manner. Calmodulin also stimulated adenylate cyclase activity, but further addition of calcium did not potentiate calmodulin-stimulated enzyme activity. These results show that the rat brain membranes contain endogenous calcium and calmodulin which stimulate adenylate cyclase activity. However, calmodulin appears to be present in membranes in sub-optimal concentration for adenylate cyclase activation, whereas calcium is present at saturating concentration. Adenylate cyclase activity diminished as DOM concentration was increased, reaching a nadir at about 1 mM. Addition of calcium restored DOM-inhibited adenylate cyclase activity to the control level. Similarly, EGTA also inhibited adenylate cyclase activity in brain membranes in a concentration dependent manner, and addition of calcium restored EGTA-inhibited enzyme activity to above control level. The fact that EGTA is a specific chelator of calcium, and that DOM mimicked adenylate cyclase inhibition by EGTA, indicate that calcium mediates DOM-induced inhibition of adenylate cyclase activity in brain membranes. While DOM completely abolished the supernatant-, and Gpp (NH)p-stimulated adenylate cyclase activity, it partly blocked calmodulin-, and forskolin-stimulated adenylate cyclase activity in brain membranes. These results indicate that DOM may interact with guanine nucleotide-binding (G) protein and/or the catalytic subunit of adenylate cyclase to produce inhibition of enzyme in rat brain membranes.  相似文献   
140.
Exposure of rabbit pulmonary arterial smooth muscle cells to 10 M of the calcium ionophore A23187 dramatically stimulates cell membrane-associated phospholipase A2 activity and arachidonic acid release. In addition, A23187 also enhances cell membrane-associated serine esterase activity. Serine esterase inhibitors phenylmethylsulfonylfuoride and diisopropyl fluorophosphate prevent the increase in serine esterase and phospholipase A2 activities and arachidonic acid release caused by A23187. A23187 still stimulated serine esterase and phospholipase A2 activities and arachidonic acid release in cells pretreated with nominal Ca2+ free buffer. Treatment of the cell membrane with A23187 does not cause any appreciable change in serine esterase and phospholipase A2 activities. Pretreatment of the cells with actinomycin D or cycloheximide did not prevent the increase in the cell membrane associated serine esterase and phospholipase A2 activities, and arachidonic acid release caused by A23187. These results suggest that (i) a membrane-associated serine esterase plays an important role in stimulating the smooth muscle cell membrane associated phospholipase A2 activity (ii) in addition to the presence of extracellular Ca2+, release of Ca2+ from intracellular storage site(s) by A23187 also appears to play a role in stimulating the cell membrane-associated serine esterase and phospholipase A2 activities, and (iii) the increase in the cell membrane-associated serine esterase and phospholipase A2 activities does not appear to require new RNA or protein synthesis.Abbreviations A23187 calcium ionophore - AA arachidonic acid - PMSF phenylmethyl sulfonylfuoride - DFP diisopropyl-fluorophosphate - DMEM Dulbecco's modified Eagles medium - FCS fetal calf serum - PBS phosphate buffered saline - HBPS Hank's buffered physiological saline - PLA2 phospholipase A2  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号