首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15336篇
  免费   1490篇
  国内免费   621篇
  2024年   19篇
  2023年   274篇
  2022年   226篇
  2021年   610篇
  2020年   573篇
  2019年   551篇
  2018年   546篇
  2017年   505篇
  2016年   505篇
  2015年   642篇
  2014年   785篇
  2013年   873篇
  2012年   674篇
  2011年   583篇
  2010年   564篇
  2009年   735篇
  2008年   774篇
  2007年   791篇
  2006年   659篇
  2005年   622篇
  2004年   578篇
  2003年   587篇
  2002年   494篇
  2001年   406篇
  2000年   371篇
  1999年   339篇
  1998年   271篇
  1997年   253篇
  1996年   260篇
  1995年   223篇
  1994年   229篇
  1993年   229篇
  1992年   184篇
  1991年   163篇
  1990年   159篇
  1989年   154篇
  1988年   134篇
  1987年   119篇
  1986年   89篇
  1985年   109篇
  1984年   124篇
  1983年   70篇
  1982年   78篇
  1981年   88篇
  1980年   64篇
  1979年   48篇
  1978年   38篇
  1977年   38篇
  1976年   25篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
One of the most exciting challenges in human biology is the understanding of how our genome was constructed during evolution. Here we explore the evolutionary history of the low polymorphic human minisatellite MsH42 and its flanking sequences. We show that the evolutionary birth of MsH42 took place within an intron, early in primate lineage evolution, more than 40 MYA. Then, single base-pair changes and duplications/deletions of repeat blocks by mispairing were probably the main forces governing the generation of this minisatellite and its polymorphism throughout primate evolution. Moreover, we detected several phylogenetic footprints at both sides of MsH42. We believe that our findings will contribute to the understanding of low-variability minisatellite evolution.  相似文献   
993.
Intracellular symbiosis is widespread in the insect world where it plays an important role in evolution and adaptation. The weevil family Dryophthoridae (Curculionoidea) is of particular interest in intracellular symbiosis evolution with regard to the great economical and ecological features of these invasive insects, and the potential for comparative studies across a wide range of host plants and environments. Here, we have analyzed the intracellular symbiotic bacteria of 19 Dryophthoridae species collected worldwide, representing a wide range of plant species and tissues. All except one (Sitophilus linearis) harbor symbiotic bacteria within specialized cells (the bacteriocytes) assembled as an organ, the bacteriome. Phylogenetic analysis of the 16S rDNA gene sequence of the Dryophthoridae endosymbionts revealed three endosymbiotic clades belonging to gamma3-Proteobacteria and characterized by different GC contents and evolutionary rate. The genus name Candidatus Nardonella was proposed for the ancestral clade infesting Dryophthoridae 100 MYA and represented by five of nine bacterial genera studied. For this clade showing low GC content (40.5% GC) and high evolutionary rate (0.128 substitutions/site per 100 Myr), a single infection and subsequent cospeciation of the host and the endosymbionts was observed. In the two other insect lineage endosymbionts, with relatively high GC content (53.4% and 53.8% GC), competition with ancestral pathogenic bacteria might have occurred, leading to endosymbiont replacement in present-day last insects.  相似文献   
994.
Theories regarding the evolution of spliceosomal introns differ in the extent to which the distribution of introns reflects either a formative role in the evolution of protein-coding genes or the adventitious gain of genetic elements. Here, systematic methods are used to assess the causes of the present-day distribution of introns in 10 families of eukaryotic protein-coding genes comprising 1,868 introns in 488 distinct alignment positions. The history of intron evolution inferred using a probabilistic model that allows ancestral inheritance of introns, gain of introns, and loss of introns reveals that the vast majority of introns in these eukaryotic gene families were not inherited from the most recent common ancestral genes, but were gained subsequently. Furthermore, among inferred events of intron gain that meet strict criteria of reliability, the distribution of sites of gain with respect to reading-frame phase shows a 5:3:2 ratio of phases 0, 1 and 2, respectively, and exhibits a nucleotide preference for MAG GT (positions -3 to +2 relative to the site of gain). The nucleotide preferences of intron gain may prove to be the ultimate cause for the phase bias. The phase bias of intron gain is sufficient to account quantitatively for the well-known 5:3:2 bias in phase frequencies among extant introns, a conclusion that holds even when taxonomic heterogeneity in phase patterns is considered. Thus, intron gain accounts for the vast majority of extant introns and for the bias toward phase 0 introns that previously was interpreted as evidence for ancient formative introns.  相似文献   
995.
We present evidence supporting the notion that codon usage (CU) compatibility between foreign genes and recipient genomes is an important prerequisite to assess the selective advantage of imported functions, and therefore to increase the fixation probability of horizontal gene transfer (HGT) events. This contrasts with the current tendency in research to predict recent HGTs in prokaryotes by assuming that acquired genes generally display poor CU. By looking at the CU level (poor, typical, or rich) exhibited by putative xenologs still resembling their original CU, we found that most alien genes predominantly present typical CU immediately upon introgression, thereby suggesting that the role of CU amelioration in HGT has been overemphasized. In our strategy, we first scanned a representative set of 103 complete prokaryotic genomes for all pairs of candidate xenologs (exported/imported genes) displaying similar CU. We applied additional filtering criteria, including phylogenetic validations, to enhance the reliability of our predictions. Our approach makes no assumptions about the CU of foreign genes being typical or atypical within the recipient genome, thus providing a novel unbiased framework to study the evolutionary dynamics of HGT.  相似文献   
996.
Closely related species of Drosophila tend to have similar genome sizes. The strong imbalance in favor of small deletions relative to insertions implies that the unconstrained DNA in Drosophila is unlikely to be passively inherited from even closely related ancestors, and yet most DNA in Drosophila genomes is intergenic and potentially unconstrained. In an attempt to investigate the maintenance of this intergenic DNA, we studied the evolution of an intergenic locus on the fourth chromosome of the Drosophila melanogaster genome. This 1.2-kb locus is marked by two distinct, large insertion events: a nuclear transposition of a mitochondrial sequence and a transposition of a nonautonomous DNA transposon DNAREP1_DM. Because we could trace the evolutionary histories of these sequences, we were able to reconstruct the length evolution of this region in some detail. We sequenced this locus in all four species of the D. melanogaster species complex: D. melanogaster, D. simulans, D. sechellia, and D. mauritiana. Although this locus is similar in size in these four species, less than 10% of the sequence from the most recent common ancestor remains in D. melanogaster and all of its sister species. This region appears to have increased in size through several distinct insertions in the ancestor of the D. melanogaster species complex and has been shrinking since the split of these lineages. In addition, we found no evidence suggesting that the size of this locus has been maintained over evolutionary time; these results are consistent with the model of a dynamic equilibrium between persistent DNA loss through small deletions and more sporadic DNA gain through less frequent but longer insertions. The apparent stability of genome size in Drosophila may belie very rapid sequence turnover at intergenic loci.  相似文献   
997.
To better understand the evolutionary dynamics of repetitive sequences in human sex chromosomes, we have analyzed seven new X/Y homologous microsatellites located within PCDHX/Y, one of the two recently described gene pairs in the Xq21.3/Yp11.2 hominid-specific homology block, in samples from Portugal and Mozambique. Sharp differences were observed on X/Y allele distributions, concerning both the presence of private alleles and a different modal repeat length for X-linked and Y-linked markers, and this difference was statistically significant. Higher diversity was found in X-linked microsatellites than in their Y chromosome counterparts; when comparing populations, Mozambicans showed more allele diversity for the X chromosome, but the contrary was true for the Y chromosome microsatellites. Evolutionary patterns, relying on intragenic PCDHX/Y SNPs, also revealed distinct scenarios for X and Y chromosomes. Greater microsatellite diversity was displayed by African X chromosomes within the most common haplotypes shared by both populations, whereas higher microsatellite diversity was found in Portugal for the ancestral Y chromosome haplotype. The most frequent PCDHY haplotype in Portuguese was the derived one, and it was not found in Mozambicans. TMRCA estimated by the rho parameter resulted in 13,700 years (7,500-20,000 years), which is consistent with a recent, post-Out-of-Africa origin for this haplotype. In conclusion, the newly described microsatellite loci generally displayed greater X-linked to Y-linked diversity and this pattern was also detected with slower evolving markers, with a remarkable differentiation between populations observed for Y chromosome haplotypes and, thus, greater divergence among Y chromosomes in human populations.  相似文献   
998.
999.
NUPTs (nuclear plastid DNA) derive from plastid-to-nucleus DNA transfer and exist in various plant species. Experimental data imply that the DNA transfer is an ongoing, highly frequent process, but for the interspecific diversity of NUPTs, no clear explanation exists. Here, an inventory of NUPTs in the four sequenced plastid-bearing species and their genomic organization is presented. Large genomes with a predicted low gene density contain more NUPTs. In Chlamydomonas and Plasmodium, DNA transfer occurred but was limited, probably because of the presence of only one plastid per cell. In Arabidopsis and rice, NUPTs are frequently organized as clusters. Tight clusters can contain both NUPTs and NUMTs (nuclear mitochondrial DNA), indicating that preNUPTs and preNUMTs might have concatamerized before integration. The composition of such a hypothetical preNUPT-preNUMT pool seems to be variable, as implied by substantially different NUPTs:NUMTs ratios in different species. Loose clusters can span several dozens of kbps of nuclear DNA, and they contain markedly more NUPTs or NUMTs than expected from a random genomic distribution of nuclear organellar DNA. The level of sequence similarity between NUPTs/NUMTs and plastid/mitochondrial DNA correlates with the size of the integrant. This implies that original insertions are large and decay over evolutionary time into smaller fragments with diverging sequences. We suggest that tight and loose clusters represent intermediates of this decay process.  相似文献   
1000.
Genome size variation in plants is thought to be correlatedwith cytological, physiological, or ecological characters. However,conclusions drawn in several studies were often contradictory.To analyze nuclear genome size evolution in a phylogenetic framework,DNA contents of 134 accessions, representing all but one speciesof the barley genus Hordeum L., were measured by flow cytometry.The 2C DNA contents were in a range from 6.85 to 10.67 pg indiploids (2n = 14) and reached up to 29.85 pg in hexaploid species(2n = 42). The smallest genomes were found in taxa from theNew World, which became secondarily annual, whereas the largestdiploid genomes occur in Eurasian annuals. Genome sizes of polyploidtaxa equaled mostly the added sizes of their proposed progenitorsor were slightly (1% to 5%) smaller. The analysis of ancestralgenome sizes on the base of the phylogeny of the genus revealedlineages with decreasing and with increasing genome sizes. Correlationsof intraspecific genome size variation with the length of vegetationperiod were found in H. marinum populations from Western Europebut were not significant within two species from South America.On a higher taxonomical level (i.e., for species groups or theentire genus), environmental correlations were absent. Thiscould mostly be attributed to the superimposition of life-formchanges and phylogenetic constraints, which conceal ecogeographicalcorrelations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号