首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11348篇
  免费   754篇
  国内免费   1630篇
  2023年   207篇
  2022年   271篇
  2021年   434篇
  2020年   379篇
  2019年   422篇
  2018年   388篇
  2017年   394篇
  2016年   450篇
  2015年   479篇
  2014年   576篇
  2013年   1042篇
  2012年   451篇
  2011年   523篇
  2010年   399篇
  2009年   539篇
  2008年   512篇
  2007年   495篇
  2006年   506篇
  2005年   432篇
  2004年   436篇
  2003年   395篇
  2002年   377篇
  2001年   261篇
  2000年   223篇
  1999年   223篇
  1998年   200篇
  1997年   203篇
  1996年   180篇
  1995年   186篇
  1994年   193篇
  1993年   186篇
  1992年   170篇
  1991年   125篇
  1990年   108篇
  1989年   124篇
  1988年   96篇
  1987年   93篇
  1986年   82篇
  1985年   132篇
  1984年   185篇
  1983年   120篇
  1982年   126篇
  1981年   79篇
  1980年   63篇
  1979年   66篇
  1978年   44篇
  1977年   31篇
  1976年   37篇
  1974年   29篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   
22.
Axonal transport of peptidylglycine alpha-amidating monooxygenase (PAM) activity was studied in rat sciatic nerves from 12 to 120 h after double ligations. The anterograde axonal transport increased and reached a plateau between 48 and 72 h and then decreased. The flow rate was 100 mm/day, and the molecular mass of the active entity was 70 kDa, which was determined by gel filtration. In contrast, there was no evidence for significant retrograde axonal transport. Anterograde axonal transport of immunoreactive cholecystokinin, a carboxy-terminal-amidated putative neuropeptide, was also found. These results suggest that PAM is transported by a rapid axonal flow and may play a role as a processing enzyme during transport or in the terminals of rat sciatic nerves.  相似文献   
23.
Four minireviews deal with aspects of the α-ketoglutarate/iron-dependent dioxygenases in this eighth Thematic Series on Metals in Biology. The minireviews cover a general introduction and synopsis of the current understanding of mechanisms of catalysis, the roles of these dioxygenases in post-translational protein modification and de-modification, the roles of the ten-eleven translocation (Tet) dioxygenases in the modification of methylated bases (5mC, T) in DNA relevant to epigenetic mechanisms, and the roles of the AlkB-related dioxygenases in the repair of damaged DNA and RNA. The use of α-ketoglutarate (alternatively termed 2-oxoglutarate) as a co-substrate in so many oxidation reactions throughout much of nature is notable and has surprisingly emerged from biochemical and genomic analysis. About 60 of these enzymes are now recognized in humans, and a number have been identified as having critical functions.  相似文献   
24.
In addition to a role for de novo protein synthesis in apoptosis we have previously shown that activation of a protein phosphatase or loss of activity of a kinase is also important in radiation-induced apoptosis in human cells [Baxter, and Lavin (1992): J Immunol 148:149–1954]. We show here that some inhibitors of protein kinases exacerbate radiation-induced apoptosis in the human cell line BM13674. The specific protein kinase A inhibitor isoquinoline sulfonamide (20 μM) gave rise to significantly increased levels of apoptosis at 2–6 h postirradiation compared to values after radiation exposure only. The same concentration of isoquinolinesulfonamide, which was effective in increasing apoptosis, reduced activity markedly. A 66% inhibition of cyclic AMP-dependent protein kinase A activity occurred in unirradiated cells at this concentration of H89 and activity was reduced to 58% in irradiated cells. Calphostin C, a specific inhibitor of protein kinase C, at a concentration of 0.1 μM, which caused 68% inhibition of enzyme activity in irradiated cells, failed to enhance the level of radiation-induced apoptosis. Other kinase inhibitors did not lead to an additional increase in apoptosis over and above that observed after irradiation. The results obtained here provide further support for an important role for modification of existing proteins during radiation-induced apoptosis.  相似文献   
25.
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide with limited therapeutic options. Comprehensive investigation of protein posttranslational modifications in HCC is still limited. Lysine acetylation is one of the most common types of posttranslational modification involved in many cellular processes and plays crucial roles in the regulation of cancer. In this study, we analyzed the proteome and K-acetylome in eight pairs of HCC tumors and normal adjacent tissues using a timsTOF Pro instrument. As a result, we identified 9219 K-acetylation sites in 2625 proteins, of which 1003 sites exhibited differential acetylation levels between tumors and normal adjacent tissues. Interestingly, many novel tumor-specific K-acetylation sites were characterized, for example, filamin A (K865), filamin B (K697), and cofilin (K19), suggesting altered activities of these cytoskeleton-modulating molecules, which may contribute to tumor metastasis. In addition, we observed an overall suppression of protein K-acetylation in HCC tumors, especially for enzymes from various metabolic pathways, for example, glycolysis, tricarboxylic acid cycle, and fatty acid metabolism. Moreover, the expression of deacetylase sirtuin 2 (SIRT2) was upregulated in HCC tumors, and its role of deacetylation in HCC cells was further explored by examining the impact of SIRT2 overexpression on the proteome and K-acetylome in Huh7 HCC cells. SIRT2 overexpression reduced K-acetylation of proteins involved in a wide range of cellular processes, including energy metabolism. Furthermore, cellular assays showed that overexpression of SIRT2 in HCC cells inhibited both glycolysis and oxidative phosphorylation. Taken together, our findings provide valuable information to better understand the roles of K-acetylation in HCC and to treat this disease by correcting the aberrant acetylation patterns.  相似文献   
26.
The subcellular and regional distribution of endo-oligopeptidase (EC 3.4.22.19), an enzyme capable of generating enkephalin by single cleavage from enkephalin-containing peptides, was determined by an enzymatic assay using metorphamide and by immunochemical techniques in the CNS of the rat. The rat CNS contains a membrane-associated form of endo-oligopeptidase, an enzyme predominantly associated with the soluble fraction of brain homogenates. Subcellular fractionation showed that approximately 17% of the total activity of the enzyme is associated with membrane fractions including synaptosomes. Synaptosomal membranes were prepared from neocortex, striatum, hypothalamus, medulla, spinal cord, and cerebellum. The amount of EC 3.4.22.19 activity solubilized by 3-[( 3-cholamidopropyl]dimethylammonio)-1-propanesulfonate from synaptosomal membranes was similar in neocortex, striatum, and hypothalamus, being three- to 10-fold greater than in spinal cord, cerebellum, and medulla. A polyclonal antibody exhibiting high affinity for endo-oligopeptidase was raised in rabbits against the purified rat brain enzyme and used to localize endo-oligopeptidase by Western blotting and by immunoperoxidase techniques. A strong band corresponding to the Mr of EC 3.4.22.19 was found in solubilized proteins obtained from synaptosomal membranes prepared from hypothalamus, neocortex, and striatum when subjected to Western blotting. The immunohistochemical localization of endo-oligopeptidase indicated that the immunoreactivity was confined to gray matter in regions known to be rich in peptide-containing neurons such as the striatum. In the cerebellum, a region poor in peptides, no staining could be detected. The nonuniform distribution of endo-oligopeptidase in rat brain suggests a role in neurotransmitter processing in the CNS.  相似文献   
27.
The development of a sensitive and specific enzyme immunoassay for GA3 is reported. This method was based on the use of peroxidase labelled GA3 and immobilized antibodies. In order to obtain a rapid immunoassay, several steps of purification were analyzed to show their necessity. Barley seed extracts were assayed at different steps of purification to exhibit the effect of extract components on the assay. It was demonstrated that HPLC had to be performed when a selective quantitation of GA3 was required. This assay allowed GA3 to be measured with reproducibility as its unmethylated form and the quantitation of GA3 in barley seeds with this enzyme immunoassay was correlated to a GC-MS method.Abbreviations GA3 gibberellin A3 - EIA enzyme immunoassay - DMF dimethylformamide - TEA tri(n)ethylamine - BSA bovine serum albumin - OVA ovalbumine - ECF ethylchloroformate - PB phosphate buffer  相似文献   
28.
Proteins assayed electrophoretically showed variation at only three of 49 presumed genetic loci in alligators from southwestern Louisiana. Average heterozygosity per individual was 0.021±0.012; proportion of polymorphic loci was 0.06. Data on the history, structure, and ecology of this alligator population are consistent with natural selection as the primary factor accounting for this low genetic variability. However, neither a historic population bottleneck nor some genetic mechanism limiting variability can be dismissed as a possible factor.The study was supported by NSF Grant BMS 73-0125 to H.C.D.  相似文献   
29.
Flooding results in induction of anaerobic metabolism in many higher plants. As an important component of anaerobic energy production, alcohol dehydrogenase (ADH) activity increases markedly in response to flooding in white clover, Trifolium repens. Significant inter-individual variation in flood-induced ADH activity exists in natural populations of T. repens. The genetic basis of this variation was analyzed by offspring-midparent regression of data from 75 greenhouse reared families; the estimated heritability of flood-induced ADH activity was 0.55 (±0.13). Genetic variation in flood-induced ADH activity has pronounced effects on physiological response and flood tolerance in this species. ADH activity is positively correlated with the rate of ethanol production, indicating that observed in vitro activity differences are manifested in in vivo physiological function. T. repens plants with higher ADH activities during flooding have greater flood tolerance (measured as growth rate when flooded/unflooded growth rate). Variation in ADH activity during flooding accounts for more than 79% of the variance in flood tolerance. On the basis of a limited field survey of populations occupying three sites differing in exposure to flooding conditions, individuals from site C, the most frequently flooded site, expressed significantly higher average ADH activity when flooded than individuals from site A, a site with no history of flooding. Since ADH activity levels are not correlated with electrophoretic mobility variation in T. repens, this work supports previous suggestions that regulatory variation in enzyme activity may play a central role in biochemical adaptations to environmental stress.  相似文献   
30.
We estimate the active part of cytochrome P-450, which is involved in a special substrate transformation, by measuring the initial change of the production rate as a function of the relaxation transitions between two different steady states of the reaction cycle of cytochrome P-450 using the light-reversibility of the carbon monoxide inhibition. The kinetic data of such relaxations are interpreted within a model cycle, which reduces the reaction cycle to three steps. The estimation of the rate constant of the first reduction step, derived from model simulation of the production rate, is confirmed by independent experimental study of the reduction kinetics.An application of our model to the O-deethylation of 7-ethoxycoumarin reveals that — in a time average — 10%–15% of the spectroscopically detectable cytochrome P-450 is involved in that transformation.Abbreviations Cyt. P-450 microsomal cytochrome P-450 - 7-EC 7-ethoxycoumarin  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号