首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12709篇
  免费   1554篇
  国内免费   1049篇
  2024年   39篇
  2023年   174篇
  2022年   215篇
  2021年   292篇
  2020年   552篇
  2019年   629篇
  2018年   713篇
  2017年   571篇
  2016年   617篇
  2015年   578篇
  2014年   636篇
  2013年   981篇
  2012年   431篇
  2011年   550篇
  2010年   459篇
  2009年   569篇
  2008年   616篇
  2007年   600篇
  2006年   554篇
  2005年   555篇
  2004年   438篇
  2003年   464篇
  2002年   432篇
  2001年   306篇
  2000年   259篇
  1999年   254篇
  1998年   271篇
  1997年   239篇
  1996年   173篇
  1995年   212篇
  1994年   187篇
  1993年   163篇
  1992年   178篇
  1991年   150篇
  1990年   145篇
  1989年   152篇
  1988年   123篇
  1987年   102篇
  1986年   75篇
  1985年   116篇
  1984年   119篇
  1983年   63篇
  1982年   94篇
  1981年   59篇
  1980年   56篇
  1979年   43篇
  1978年   25篇
  1977年   26篇
  1976年   23篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
The hemolymph of the adult female Manduca sexta was fractionated by cascade-mode multi-affinity chromatography (CASMAC) on a main-line tandem column chain containing Zn(2+)-TED, T-gel, Ni(2+)-DPA, and phenylsepharose and a side-line column containing Zn(2+)-DPA. The technique separated some of the previously described major hemolymph proteins, and yielded a number of fractions with simple composition. Some of these fractions contained only less abundant proteins of Manduca hemolymph. Thus, it appears that CASMAC would be a very useful fractionation technique for purification and characterization of the minor proteins of insect hemolymph.  相似文献   
102.
Recent crystallographic studies on the mutant human hemoglobin Ypsilanti (beta 99 Asp-->Tyr) have revealed a previously unknown quaternary structure called "quaternary Y" and suggested that the new structure may represent an important intermediate in the cooperative oxygenation pathway of normal hemoglobin. Here we measure the oxygenation and subunit assembly properties of hemoglobin Ypsilanti and five additional beta 99 mutants (Asp beta 99-->Val, Gly, Asn, Ala, His) to test for consistency between their energetics and those of the intermediate species of normal hemoglobin. Overall regulation of oxygen affinity in hemoglobin Ypsilanti is found to originate entirely from 2.6 kcal of quaternary enhancement, such that the tetramer oxygenation affinity is 85-fold higher than for binding to the dissociated dimers. Equal partitioning of this regulatory energy among the four tetrameric binding steps (0.65 kcal per oxygen) leads to a noncooperative isotherm with extremely high affinity (pmedian = .14 torr). Temperature and pH studies of dimer-tetramer assembly and sulfhydryl reaction kinetics suggest that oxygenation-dependent structural changes in hemoglobin Ypsilanti are small. These properties are quite different from the recently characterized allosteric intermediate, which has two ligands bound on the same side of the alpha 1 beta 2 interface (see ref. 1 for review). The combined results do, however, support the view that quaternary Y may represent the intermediate cooperativity state of normal hemoglobin that binds the last oxygen.  相似文献   
103.
A step leading to the formation of the covalent complexes between porcine pancreatic elastase (PPE) and 7-[(alkylcarbamoyl)amino]-4-chloro-3-ethoxyisocoumarins (alkylHNCO-EICs) is the formation of the noncovalent Michaelis complex. No average structures are available for the Michaelis complexes of PPE with alkylHNCO-EICs. We present the results of an initial step in obtaining these structures and have determined kinetic constants as well. The kinetic results indicate that formation of the Michaelis complex is what differentiates the effectiveness of these inhibitors in inactivating PPE. The structural and kinetic results together suggest that the structure of the Michaelis complex is necessary for the design of potent alkylHNCO-EIC inhibitors of PPE. Two novel alkylHNCO-EICs are predicted to be the best inhibitors of this series. An alternate mechanism for serine protease inhibition is also proposed. Evidence for, and studies that may add support to, the hypothesized mechanism are discussed.  相似文献   
104.
Prior temperature exposure affects subsequent chilling sensitivity   总被引:5,自引:0,他引:5  
The chilling sensitivity of small discs or segments of tissue excised from chillingsensitive species was significantly altered by prior temperature exposure subsequent to holding the tissue at chilling temperatures as measured by a number of physiological processes sensitive to chilling. This temperature conditioning was reversible by an additional temperature exposure before chilling, and mature-green and red-ripe tomato tissue exhibit similar chilling sensitivities. Exposing pericarp discs excised from tomato fruit (Lycopersicon esculentum Mill. cv. Castelmart), a chilling-sensitive species, to temperatures from 0 to 37°C for 6 h before chilling the discs at 2.5°C for 4 days significantly altered the rate of ion leakage from the discs, but had no effect on the rate of ion leakage before chilling and only a minimal effect on discs held at a non-chilling temperature of 12°C. Exposing chillingsensitive tissue to temperatures below that required to induce heat-shock proteins but above 20°C significantly increased chilling sensitivity as compared to tissue exposed to temperatures between 10 and 20°C. Rates of ion leakage after 4 days of chilling at 2.5°C were higher from fruit and vegetative tissue of chilling-sensitive species (Cucumis sativus L. cv. Poinsett 76, and Cucurbita pepo L. cv. Young Beauty) that were previously exposed for 6 h to 32°C than from similar tissue exposed to 12°C. Exposure to 32 and 12°C had no effect on the rate of ion leakage from fruit tissue of chilling tolerant species (Malus domestica Borkh. cv. Golden Delicious, Pyrus communis L. cv. Bartlett). Ethylene and CO2 production were higher and lycopene synthesis was lower in chilled tomato pericarp discs that were previously exposed for 6 h to 32°C than the values from tissue exposed to 12°C for 6 h before chilling. Increased chilling sensitivity induced by a 6 h exposure to 32°C could be reversed by subsequent exposure to 12°C for 6 h.  相似文献   
105.
Dicotyledonous plants subjected to Fe-deficiency stress can decrease pH in the rhizosphere by proton excretion and reduce ferric iron by an activated reduction system in the plasma membranes of the root or by reductants released from the roots. The efficiency by which these plants take up Fe may strongly depend on their cation-anion balance. This study presents results of two experiments conducted to evaluate the effect of K, growth stage and cultivar on ionic balance and Fe acquisition of peanut (Arachis hypogaea L.) plants.Potassium applications to the high calcareous soil (30.3% CaCO3) favoured proton release, but did not ameliorate plant Fe acquisition. At the earliest stages of plant growth, anion uptake exceeded cation uptake due to intensive N uptake. With time, a shift in the ionic balance was observed as a result of predominant cation uptake. It appears that the relationship between H/OH-ion release and Fe nutrition of peanut plants is actually a complex phenomenon under soil conditions and depends on some soil parameters, such as CaCO3 content. Even by enhanced H-ion release Fe nutrition of plants can be impaired if soil CaCO3 is too high.  相似文献   
106.
The second-order rate constant (k4) for the oxidation of monosubstituted phenols and anilines by lactoperoxidase compound II was examined by Chance's method [B. Chance, Arch. Biochem. Biophys. 71 (1957), 130–136]. When the electronic states of these substrates were calculated by an ab initio molecular orbital method, it was found that the log k4 value correlates well with the highest occupied molecular orbital (HOMO) energy level but not with the net charge or frontier electron density. These results are essentially similar to those reported previously in the case of horseradish peroxidase [J. Sakurada, R. Sekiguchi, K. Sato, and T. Hosoya, Biochemistry 29 (1990), 4093–4098], showing some dissimilar features which are considered to reflect the structural difference between the two enzymes.Abbreviations HOMO highest occupied molecular orbital - HRP horseradish peroxidase - LPO lactoperoxidase (EC 1.11.1.7) - LUMO lowest unoccupied molecular orbital  相似文献   
107.
Abstract. Flux densities of water vapour and carbon dioxide were measured for a Mediterranean macchia canopy. Results show good agreement between the measured available energy and the sum of latent sensible and heat flux densities determined with the eddy correlation technique. Joint evaluation of the Bowen ratio, aerodynamic resistance, canopy resistance and the 'omega factor' suggests that the macchia canopy is intermediate in aerodynamic roughness between coniferous and deciduous canopies. Maximum daytime carbon flux densities ranged from -14 to -22(μnol m−2 s−1 on a ground area basis. The ratio of transpiration to assimilation (E/A) was a function of incident photo-synthetic photon flux density below about 400 μmol m−2s−1 and above it was fairly constant at 272 mol mol−1 (H2O/CO2). The relationship between carbon influx and canopy conductance was linear. Results show promising applications of the eddy correlation technique for evaluating physiological features of canopies, treated as unitary functional systems.  相似文献   
108.
The development of membrane bioenergetic studies during the last 25 years has clearly demonstrated the validity of the Mitchellian chemiosmotic H+ cycle concept. The circulation of H+ ions was shown to couple respiration-dependent or light-dependent energy-releasing reactions to ATP formation and performance of other types of membrane-linked work in mitochondria, chloroplasts, some bacteria, tonoplasts, secretory granules and plant and fungal outer cell membranes. A concrete version of the direct chemiosmotic mechanism, in which H+ potential formation is a simple consequence of the chemistry of the energy-releasing reaction, is already proved for the photosynthetic reaction centre complexes.Recent progress in the studies on chemiosmotic systems has made it possible to extend the coupling-ion principle to an ion other than H+. It was found that, in ceertain bacteria, as well as in the outer membrane of the animal cell, Na+ effectively substitutes for H+ as the coupling ion (the chemiosmotic Na+ cycle). A precedent is set when the Na+ cycle appears to be the only mechanism of energy production in the bacterial cell. In the more typical case, however, the H+ and Na+ cycles coexist in one and the same membrane (bacteria) or in two diffeerent membranes of one and the same cell (animals). The sets of and generators as well as and consumers found in different types of biomembranes, are listed and discussed.  相似文献   
109.
The initial (F0), maximal (FM) and steady-state (FS) levels of chlorophyll fluorescence emitted by intact pea leaves exposed to various light intensities and environmental conditions, were measured with a modulated fluorescence technique and were analysed in the context of a theory for the energy fluxes within the photochemical apparatus of photosynthesis. The theoretically derived expressions of the fluorescence signals contain only three terms, X=J2p2F/(1–G), Y=T/(1–G) and V, where V is the relative variable fluorescence, J2 is the light absorption flux in PS II, p2F is the probability of fluorescence from PS II, G and T are, respectively, the probabilities for energy transfer between PS II units and for energy cycling between the reaction center and the chlorophyll pool: F0=X, FM=X/(1–Y) and FS=X(1+(YV/(1–Y))). It is demonstrated that the amplitudes of the previously defined coefficients of chlorophyll fluorescence quenching, qP and qN, reflect, not just photochemical (qP) or nonphotochemical (qN) events as implied in the definitions, but both photochemical and nonphotochemical processes of PS II deactivation. The coefficient qP is a measure of the ratio between the actual macroscopic quantum yield of photochemistry in PS II (41-1) in a given light state and its maximal value measured when all PS II traps are open (41-2) in that state, with 41-3 and 41-4. When the partial connection between PS II units is taken into consideration, 1-qP is nonlinearily related to the fraction of closed reaction centers and is dependent on the rate constants of all (photochemical as well as nonphotochemical) exciton-consuming processes in PS II. On the other hand, 1-qN equals the (normalized) ratio of the rate constant of photochemistry (k2b) to the combined rate constant (kN) of all the nonphotochemical deactivation processes excluding the rate constant k22 of energy transfer between PS II units. It is demonstrated that additional (qualitative) information on the individual rate constants, kN-k22 and k2b, is provided by the fluorescence ratios 1/FM and (1/F0)–(1/FM), respectively. Although, in theory, 41-5 is determined by the value of both k2b and kN-k22, experimental results presented in this paper show that, under various environmental conditions, 41-6 is modulated largely through changes in k N, confirming the idea that PS II quantum efficiency is dynamically regulated in vivo by nonphotochemical energy dissipation.Abbreviations Chl chlorophyll - F0, FM and FS initial, maximal and steady-state levels of modulated Chl fluorescence emitted by light-adapted leaves - PS I and II photosystem I and II - qP and qN (previously defined) photochemical and nonphotochemical components of Chl fluorescence quenching  相似文献   
110.
Chloramphenicol acetyl transferase (CAT) gene was used as a reporter gene to assess the conditions for polyethylene glycol (PEG)-mediated transfection of kiwifruit protoplasts. The effect of plasmid concentration and the presence of carrier DNA were each assessed by analysing CAT activity in transfected protoplasts using thin-layer chromatography (TLC) autoradiographic detection of acetylated chloramphenicol. A gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) non-radioactive method was developed for monitoring CAT gene activity. This method provides a high speed of analysis (30 min) and precise means of detecting acetylated products at the nanomolar level, enabling quantification at very low transfection rates. Using this method we optimized plasmid and PEG concentration and also assessed the effect of heat shock on transfection. The best CAT activity was obtained using 30% polyethylene glycol 4000 and by submitting protoplasts to heat shock (45 °C, 5 min) prior to transfection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号