首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2327篇
  免费   47篇
  国内免费   39篇
  2023年   12篇
  2022年   12篇
  2021年   29篇
  2020年   17篇
  2019年   21篇
  2018年   22篇
  2017年   19篇
  2016年   28篇
  2015年   25篇
  2014年   44篇
  2013年   78篇
  2012年   36篇
  2011年   53篇
  2010年   27篇
  2009年   78篇
  2008年   104篇
  2007年   89篇
  2006年   108篇
  2005年   119篇
  2004年   116篇
  2003年   94篇
  2002年   73篇
  2001年   91篇
  2000年   102篇
  1999年   86篇
  1998年   93篇
  1997年   88篇
  1996年   77篇
  1995年   89篇
  1994年   70篇
  1993年   82篇
  1992年   77篇
  1991年   59篇
  1990年   48篇
  1989年   45篇
  1988年   38篇
  1987年   40篇
  1986年   19篇
  1985年   32篇
  1984年   25篇
  1983年   5篇
  1982年   13篇
  1981年   7篇
  1980年   8篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1975年   2篇
  1972年   1篇
  1967年   1篇
排序方式: 共有2413条查询结果,搜索用时 375 毫秒
91.
Summary Somatic embryogenesis has been shown to be an imperfect recapitulation of stages involved to form embryos from vegetative tissues. Although abscisic acid has been implicated in normalizing development, studies that specifically investigate conversion (vegetative leaf initiation) in somatic embryos are lacking. This report documents a follow-up of a study that implicated abscisic acid as a vital factor in allowing embryos ofDaucus carota to progress to the plantlet stage. Abscisic acid was determined to enhance conversion at doses ranging from 1 to 50 µM. Younger embryo stages were more responsive to abscisic acid application with regards to plantlet recovery. Pulses of abscisic acid were shown to elicit more rapid response with younger embryo stages, indicating more plastic development. Fluridone, an abscisic acid synthesis inhibitor, was shown to dramatically reduce conversion, even at low doses (<5µM). When abscisic acid was applied concurrently with fluridone, partial restoration of conversion was observed. Histologically, fluridone was seen to cause pronounced vacuolation in the shoot apical notch which resulted in the loss of meristematic cells, negating conversion capacity. Quantitation of total cytoplasmic area showed that abscisic acid reduced vacuolar intrusion into the apical notch, while fluridone caused a significant increase in vacuolation of cells in this region. This report documents further evidence of a role for abscisic acid in plantlet establishment from somatic embryos ofDaucus carota.  相似文献   
92.
Summary Induction of somatic embryogenesis, shoot organogenesis, and subsequent plant regeneration in niger seem to be dependent on genotype, choice of explant, and composition of media growth regulators. Two distinct regeneration protocols have been developed for somatic embryogenesis and shoot organogenesis. Somatic embryogenesis was induced from epicotyls and cotyledonary explants (9 to 35%) (but not from hypocotyls and roots) in presence of 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, and 2,4,5-trichlorophenoxypropionic acid. These embryos matured in MS medium containing Kinetin plus naphthalene acetic acid (NAA), Kinetin plus Zeatin, and Kinetin plus abscisic acid (ABA). Matured embryos could be germinated on LS and MS basal media without hormones. Non-embryogenic callus initiated on Linsmaier and Skoog’s (LS) medium from cotyledons of six different genotypes produced shoots (9 to 32%) on Murashige and Skoog’s (MS) medium fortified with 6-benzylaminopurine (BAP, 0.5 mg · liter−1), and BAP (1 mg · liter−1) plus NAA (0.1 mg · liter−1). These shoots were rooted with 100% frequency by using indole-3-acetic acid or NAA and transferred successfully to the soil.  相似文献   
93.
Substantial quantities of mRNA encoding the abundant Em polypeptide accumulate, in planta, in developing embryos of maize (Zea mays L.). By contrast, accumulation of Em mRNA is only barely detectable in embryos with the vp-5/vp-5 genotype [an abscisic acid (ABA)-deficient viviparous phenotype]. Em mRNA is not detectable within viviparous embryos of the vp-1/vp-1 genotype that are non-responsive to ABA. Culture of immature wild-type and vp-5/vp-5 embryos in the presence of exogenous ABA or of an osmotically active agent prevents precocious germination and results in expression of the Em genes. When vp-1/vp-1 embryos are cultured under similar conditions, only the application of osmotic stress prevents precocious germination. However, Em mRNA does not accumulate either in ABA-treated or stressed, arrested embryos, indicating a requirement for ABA perception through a VP-1-mediated mechanism for Em gene expression. Nevertheless, vp-1/vp-1 embryos do show both ABA and stress responses at the molecular level. Treatment with ABA causes the accumulation of mRNA encoding a polypeptide of approx. 30 kDa, whilst osmotic stress induces the accumulation both of a 30-kDa polypeptide and a set of approx. 20-kDa polypeptides. This indicates the existence of discrete, parallel ABA and stress response pathways in developing maize embryos.Abbreviations ABA abscisic acid - cDNA copy-DNA - DAP days after pollination - kDa kilodaltons - MS Murashige and Skoog medium - LEA late embryogenesis abundant - NEpHGE non-equilibrium pH gradient gel electrophoresis - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   
94.
95.
Summary Embryogenic callus was formed from several cultivars of cotton (Gossypium hirsutum L.) when sections of hypocotyl and cotyledon were cultured on medium supplemented with 5 mg/liter 6-(γ, γ-dimethylallyl-amino)-purine (2iP) and 0.1 mg/liter α-naphthaleneacetic acid (NAA) for callus initiation and proliferation, and subcultured on medium supplemented with 5 mg/liter NAA and 0.1 to 1 mg/liter 2iP for embryogenic callus induction. It seems that a high 2iP:auxin ratio is preferred for callus initiation and proliferation, but should be exchanged with a higher NAA:cytokinin ratio before differentiation will occur. Embryogenic calluses were recovered at a frequency of 2 to 85% depending on the cultivar used. Coker cultivars produced embryogenic callus faster and at higher frequencies than other cultivars. Embryogenic callus produced somatic embryos on phytohormone-free medium. This medium was used to maintain and proliferate embryogenic callus for a perid of 18 to 24 mo. Somatic embryos were converted to plants on a lower ionic strength medium supplemented with 0.1 mg/liter gibberellic acid (GA3) and 0.01 mg/liter NAA. Glucose was the only carbohydrate used through all phases of tissue culture and was much better than sucrose, on which phenolic production was very high. High temperature (30° C) and low light intensity (9 μE · m−2 · s−1) were optimal conditions for callus initiation, embryogenic callus induction, and maintenance, whereas lower temperature (25° C) and high light intensity (90 μE · m−2 s−1) were the optimal conditions for somatic embryo maturation, germination, and plantlet development. Plants could be regenerated within 10 to 12 wk in Cokers or 7 to 8 mo. in others.  相似文献   
96.
The ecdysoneless locus in Drosophila melanogaster has been defined previously by a single conditional mutation, I(3)ecd1, that causes an ecdysteroid deficit and larval death at the restrictive temperature, 29°C, although the primary role of the mutation in developmental processes has been unclear. Gene dosage and complementation studies reported here for ecd1 and five nonconditional lethal alleles indicate that the ecd locus plays prezygotic and postzygotic roles essential for normal embryonic development, the successful completion of each larval molt, adult eclosion, and female fertility. The ecd locus is also required for normal macrochaete differentiation. For each observed phenotype, the severity of mutational effects was correlated with ecd mutant genotypes. In all cases, ecd1 homozygotes were least affected. Mutants heteroallelic for ecd1 and any one of four nonconditional recessive mutations were more severely affected than ecd1 homozy-gotes, revealing these as hypomorphic alleles. For all phenotypic effects, mutants heteroallelic for ecd1 and a dominant mutation (ecd3D) were most severely affected. These individuals died during embryogenesis at 29°C and developed no macrochaetes on the dorsal thorax when transferred to 29°C during the white prepupal stage. The ecd3D mutation also caused female semisterility in heterozygotes. Ecdysteroid regulation has been implicated previously in all the developmental processes disrupted by these ecd mutations except for macrochaete differentiation. © 1993 Wiley-Liss, Inc.  相似文献   
97.
Summary Twenty-three independent kanamycin resistant lines were obtained after cocultivation of longterm embryogenic cultures of three Asparagus officinalis L. genotypes with an Agrobacterium tumefaciens strain harboring ß-glucuronidase and neomycin phosphotransferase II genes. All the lines showed ß-glucuronidase activity by histological staining. DNA analysis by Southern blots of the kanamycin resistant embryogenic lines and of a plant regenerated from one of them confirmed the integration of the T-DNA.Abbreviations GUS ß-glucuronidase - X-Gluc 5-bromo-4-chloro-3indolyl ß-D-glucuronic acid - NPT II neomycin phosphotransferase II  相似文献   
98.
A system for somatic embryogenesis and plant regeneration of spinach from hypocotyl segments has been established. Callus was induced on solid media supplemented with 8.5–15.0 mg.l−1 of indole-3-acetic acid and 3.46–34.64 mg.l−1 gibberellic acid. Callus was then subcultured on different media (solid or liquid) with or without IAA, or continuously maintained on the initiating media. Somatic embryos were obtained in subcultures on IAA-containing media as well as in long-term cultures on initiating media. The best results were achieved in liquid subcultures. About 60% of plantlets survived after transplanting in pots.  相似文献   
99.
细胞核移植技术已被证明是研究发育中核质相互关系的非常重要的手段之一,电融合技术也是近十年发展起来的新型细胞融合技术。本实验运用这两项技术,进行了鼠、兔目间核质杂交实验,小鼠8-细胞核在激活的兔去核卵母细胞中,发生了染色体超前凝聚及核膨胀,融合卵移植到小鼠输卵管4.5天后,冲洗出,有5.4%的重构卵发育到囊胚期,通过染色体检查,囊胚细胞中均为小鼠染色体,其中一个囊胚为正常小鼠核型(2 n=40,XX)。通过本实验,我们认为:鼠兔远缘核质杂交胚胎的早期发育是可能的。  相似文献   
100.
Storage proteins of interior spruce ( Picea glauca engelmanii complex) somatic embryos were compared to those of zygotic embryos by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Somatic embryos contain the same storage proteins as zygotic embryos based on similarities of molecular weight, isoelectric variants, solubility characteristics and disulfide linkages. Storage protein levels varied among different somatic embryo genotypes; however, all genotypes tested accumulated significant amounts of storage proteins. Zygotic and somatic embryos display a similar developmental accumulation of storage proteins. The 22, 24, 33 and 35 kDa proteins appear in early stage embryos, while the 41 kDa protein begins to accumulate during mid cotyledon development. The 22, 24 and 41 kDa proteins accumulate continuously during cotyledon development in somatic embryos cultured on abscisic acid. In contrast, zygotic embryos display a more rapid and transient accumulation of these proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号