首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3330篇
  免费   315篇
  国内免费   109篇
  2023年   67篇
  2022年   52篇
  2021年   79篇
  2020年   112篇
  2019年   165篇
  2018年   141篇
  2017年   97篇
  2016年   83篇
  2015年   77篇
  2014年   138篇
  2013年   199篇
  2012年   97篇
  2011年   142篇
  2010年   141篇
  2009年   149篇
  2008年   199篇
  2007年   189篇
  2006年   212篇
  2005年   139篇
  2004年   134篇
  2003年   127篇
  2002年   119篇
  2001年   64篇
  2000年   47篇
  1999年   58篇
  1998年   65篇
  1997年   61篇
  1996年   39篇
  1995年   33篇
  1994年   33篇
  1993年   27篇
  1992年   39篇
  1991年   27篇
  1990年   23篇
  1989年   26篇
  1988年   14篇
  1987年   11篇
  1986年   22篇
  1985年   34篇
  1984年   60篇
  1983年   31篇
  1982年   55篇
  1981年   28篇
  1980年   20篇
  1979年   18篇
  1978年   15篇
  1977年   10篇
  1976年   9篇
  1974年   8篇
  1973年   5篇
排序方式: 共有3754条查询结果,搜索用时 31 毫秒
991.
Ribonuclease A (RNase A) with several high affinity binding sites is a possible target for many organic and inorganic molecules. 3'-Azido-3'-deoxythymidine (AZT) is the first clinically effective drug for the treatment of human immunodeficiency virus (HIV) infection. The drug interactions with protein and nucleic acids are associated with its mechanism of action in vivo. This study was designed to examine the interaction of AZT with RNase A under physiological conditions. Reaction mixtures of constant protein concentration (2%) and different drug contents (0.0001-0.1 mM) are studied by UV-visible, FTIR, and circular dichroism spectroscopic methods in order to determine the drug binding mode, the drug binding constant, and the effects of drug complexation on the protein and AZT conformations in aqueous solution. The spectroscopic results showed one major binding for the AZT-RNase complexes with an overall binding constant of 5.29 x 10(5) M(-1). An increase in the protein alpha helicity was observed upon AZT interaction, whereas drug sugar pucker remained in the C2'-endo/anti conformation in the AZT-RNase complexes.  相似文献   
992.
Topotecan (TPT), a water-soluble derivative of camptothecin, is a potent antitumor poison of human DNA topoisomerase I (top1) that stabilizes the cleavage complex between the enzyme and DNA. The role of the recently discovered TPT affinity to DNA remains to be defined. The aim of this work is to clarify the molecular mechanisms of the TPT-DNA interaction and to propose the models of TPT-DNA complexes in solution in the absence of top1. It is shown that TPT molecules form dimers with a dimerization constant of (4.0 +/- 0.7) x 10(3) M(-1) and the presence of DNA provokes more than a 400-fold increase of the effective dimerization constant. Flow linear dichroism spectroscopy accompanied by circular dichroism, fluorescence, and surface-enhanced Raman scattering experiments provide evidence that TPT dimers are able to bind DNA by bridging different DNA molecules or distant DNA structural domains. This effect may provoke modification of the intrinsic geometry of the cruciform DNA structures, leading to the appearance of new crossover points that serve as the sites of the top1 loading position. The data presume the hypothesis of TPT-mediated modulation of top1-DNA recognition before ternary complex formation.  相似文献   
993.
Determination of the absolute configuration of the 1-carboxyethyl substituent on a monosaccharide by circular dichroism measurements was found to be a sensitive and simple method. It relies on comparison of the spectrum of a 1-carboxyethyl substituted sugar or sugar derivative with the spectra of (R)- and (S)-lactic acid in the region 200-260 nm in which the (R)- and (S)-configuration give negative and positive deltaepsilon, respectively. The oligo- or poly-saccharide containing a 1-carboxyethyl substituted sugar is hydrolyzed to monomers and the 1-carboxyethyl substituted sugar isolated by chromatography. The CD spectrum obtained for the 1-carboxyethyl substituted sugar in water solution at pH 2 is then compared with spectra of (R)- and (S)-lactic acid. The sign for the absorption and a maximum of comparable intensity and appearance around 210 nm, identify the stereochemistry.  相似文献   
994.
DNA is a target molecule for anthracycline anticancer drugs. We have used new anthracycline derivatives, bisdaunorubicin (WP631) and its monomeric analogues (WP700 serie), and look if there was a relation between the drug binding affinity to naked DNA and to cell nucleus in the cell with its cytotoxicity. Circular dichroism (CD) and fluorescence were used to follow the interaction of anthracycline derivatives with naked DNA and cell nuclei. WP631 interacts with DNA at two distinct stoichiometries, 6:1 and 3:1 base pair (bp)/WP631 molecule (3:1 and 1.5:1 per anthracycline rings). Monomeric daunorubicin (DNR) with its amino sugar N-bound to amino- and nitro-substituted benzyl moiety, representing p-xylenyl linker present in WP631 bisintercalator, is much more binding to DNA than DNR or WP631. These findings are supported by the study of drug binding by nuclei of K562 cells. Around 70% of WP700 intercalate to nucleus DNA in the steady-state, while only 45% of DNR intercalate DNA in the cell. The binding of WP631 by K562 cells is even less effective ( approximately 20%). WP 700 compounds, which are very similar to each other in their binding to DNA, self-association and cell accumulation, differ very distinctly in their cytotoxicity power. The most effective compounds are amino-benzyl derivatives of WP 700 series. The nitro-benzyl compounds have very low toxicity, even if they bind to DNA with similar power with that of the amino derivatives. The comparison of the all data clearly indicates no relation between cytotoxicity of the drug and its ability to intercalate DNA.  相似文献   
995.
Cutinase encapsulated in dioctyl sulfosuccinate reverse micelles displays very low stability, undergoing fast denaturation due to an anchoring at the micellar interface. The denaturation process and the structure of the reverse micelle were characterized using biophysical techniques. The kinetics of denaturation observed from fluorescence match the increase of the hydrodynamic radius of reverse micelles. Denaturation in reverse micelles is mainly the unfolding of the three-dimensional structure since the decrease in the circular dichroism ellipticity in the far-UV range is very small. The process is accompanied by an increase in the steady-state anisotropy, as opposed to what happens for denaturation in aqueous solution.Since 1-hexanol used as co-surfactant in dioctyl sulfosuccinate reverse micelles slows or even prevents cutinase denaturation, its effect on cutinase conformation and on the size of reverse micelles was analyzed. When 1-hexanol is present, cutinase is encapsulated in a large reverse micelle, as deduced from dynamic light scattering. The large reverse micelle filled with cutinase was built from the fusion of reverse micelles according to a pseudo-unimolecular process ranging in time from a few minutes to 2h depending on the reverse micellar concentration. This slow equilibrium driven by the encapsulated cutinase has not been reported previously. The encapsulation of cutinase in dioctyl sulfosuccinate reverse micelles establishes a completely new equilibrium characterized by a bimodal population of empty and filled reverse micelles, whose characteristics depend greatly on the interfacial characteristics, that is, on the absence or presence of 1-hexanol.  相似文献   
996.
Zhu  X.Y.  Wang  S.M.  Zhang  C.L. 《Photosynthetica》2003,41(1):97-104
As compared with the swamp reed (SR) ecotype of Phragmites communis growing in the desert region of northwest China, plants of the dune reed (DR) ecotype from the same region possessed lower chlorophyll (Chl) content in leaves, and less thylakoids and grana stacks in chloroplasts. Tube gel electrophoresis without stain showed that the contents of Chl-protein (Pro) components related to photosystem 2 (PS2) were markedly lower in the DR thylakoid membranes than in the SR thylakoid membranes, while the contents of Chl-Pro components associated with PS1 were almost the same in both types. SDS-PAGE analysis indicated that the content of polypeptides of the light-harvesting Chl a/b complex of PS2 (LHC2) was lower in the DR thylakoids. Besides, the conformation of LHC2 within the DR thylakoid membranes was also altered as indicated by circular dichroism spectra. Hence in the DR, reduced energy harvesting by declining the size of LHC2 might be responsible for the down-regulated PS2 activity. Chl fluorescence parameters. Fv/Fm and quantum efficiency of PS2 (PS2), were lower in the DR leaves than in the SR ones. However, non-photochemical quenching coefficient (qN) was greater in DR than that in SR, implying other energy dissipation way exists in the DR photosynthetic membranes.  相似文献   
997.
998.
We have designed, synthesized, and characterized a 216 amino acid residue sequence encoding a putative idealized alpha/beta-barrel protein. The design was elaborated in two steps. First, the idealized backbone was defined with geometric parameters representing our target fold: a central eight parallel-stranded beta-sheet surrounded by eight parallel alpha-helices, connected together with short structural turns on both sides of the barrel. An automated sequence selection algorithm, based on the dead-end elimination theorem, was used to find the optimal amino acid sequence fitting the target structure. A synthetic gene coding for the designed sequence was constructed and the recombinant artificial protein was expressed in bacteria, purified and characterized. Far-UV CD spectra with prominent bands at 222nm and 208nm revealed the presence of alpha-helix secondary structures (50%) in fairly good agreement with the model. A pronounced absorption band in the near-UV CD region, arising from immobilized aromatic side-chains, showed that the artificial protein is folded in solution. Chemical unfolding monitored by tryptophan fluorescence revealed a conformational stability (DeltaG(H2O)) of 35kJ/mol. Thermal unfolding monitored by near-UV CD revealed a cooperative transition with an apparent T(m) of 65 degrees C. Moreover, the artificial protein did not exhibit any affinity for the hydrophobic fluorescent probe 1-anilinonaphthalene-8-sulfonic acid (ANS), providing additional evidence that the artificial barrel is not in the molten globule state, contrary to previously designed artificial alpha/beta-barrels. Finally, 1H NMR spectra of the folded and unfolded proteins provided evidence for specific interactions in the folded protein. Taken together, the results indicate that the de novo designed alpha/beta-barrel protein adopts a stable three-dimensional structure in solution. These encouraging results show that de novo design of an idealized protein structure of more than 200 amino acid residues is now possible, from construction of a particular backbone conformation to determination of an amino acid sequence with an automated sequence selection algorithm.  相似文献   
999.
High-density lipoproteins (HDL) are heterogeneous complexes of proteins and lipids that mediate cholesterol removal from the body. Our thermal and chemical denaturation studies of mature spherical HDL isolated from human plasma show that, contrary to the widely held assumption, the particle stability has a kinetic rather than thermodynamic origin. Guanidinum hydrochloride (GdmHCl) concentration jumps at 25 degrees C monitored by circular dichroism (CD) at 222 nm reveal two dominant irreversible kinetic phases in HDL denaturation. The slower phase (relaxation time tau(1) approximately 2 x 10(4) seconds) is observed in 1-6 M GdmHCl, and the faster phase (tau(2) approximately 2 x 10(3) seconds) is detected in 3-6 M GdmHCl. Comparison of the free energy barriers associated with these phases, deltaG* = 16-17 kcal mol(-1), with the near-zero apparent thermodynamic stability inferred from the spectroscopic measurements after prolonged incubation in 0-6 M GdmHCl at 22 degrees C indicates the kinetic origin for HDL stabilization. Electron microscopic analysis of HDL incubated in 0-6 M GdmHCl suggests that the slower kinetic phase involves HDL fusion, while the faster phase involves particle rupture and release of the apolar lipid core. Thermal denaturation experiments indicate high enthalpic barriers for the particle rupture that may arise from the transient disruption of lipid and/or protein packing interactions. These results corroborate our earlier analysis of model discoidal HDL and indicate that a kinetic mechanism provides a universal natural strategy for lipoprotein stabilization. Such a mechanism may facilitate structural integrity of the heterogeneous lipoprotein particles, slow their spontaneous interconversions, and thereby modulate lipoprotein lifetime and functions.  相似文献   
1000.
Semi-purified lipases from Candida rugosa, Pseudomonas cepacia and Alcaligenes sp. were chemically modified with a wide range of hydrophobic groups such as benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, p-methoxybenzyloxycarbonyl, t-butoxycarbonyl, lauroyl and acetyl moieties. The Candida rugosa lipase MY modified with the benzyloxycarbonyl group (modification ratio = 84%) brought about a 15-fold increase in enantioselectivity (E value) towards the hydrolysis of racemic butyl 2-(4-ethylphenoxy)propionate in an aqueous buffer solution, although the enzymatic activity was decreased. The origin of the enantioselectivity enhancement by chemical modification of the lipase is attributed to a significant deceleration in the initial reaction rate for the incorrectly binding enantiomer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号