首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12122篇
  免费   2059篇
  国内免费   2541篇
  2024年   32篇
  2023年   376篇
  2022年   288篇
  2021年   350篇
  2020年   643篇
  2019年   660篇
  2018年   755篇
  2017年   729篇
  2016年   700篇
  2015年   718篇
  2014年   745篇
  2013年   938篇
  2012年   592篇
  2011年   652篇
  2010年   462篇
  2009年   624篇
  2008年   596篇
  2007年   648篇
  2006年   610篇
  2005年   541篇
  2004年   459篇
  2003年   462篇
  2002年   452篇
  2001年   373篇
  2000年   310篇
  1999年   315篇
  1998年   258篇
  1997年   224篇
  1996年   211篇
  1995年   231篇
  1994年   224篇
  1993年   178篇
  1992年   196篇
  1991年   142篇
  1990年   132篇
  1989年   112篇
  1988年   105篇
  1987年   75篇
  1986年   74篇
  1985年   95篇
  1984年   75篇
  1983年   46篇
  1982年   84篇
  1981年   43篇
  1980年   47篇
  1979年   40篇
  1978年   30篇
  1977年   18篇
  1976年   24篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 890 毫秒
101.
Summary Estimates of belowground net primary production (BNP) obtained by using traditional soil core harvest data are subject to a variety of potentially serious errors. In a controlled growth chamber experiment, we examined the aboveground-belowground, labile to structural tissue, and plant to soil dynamics of carbon to formulate a14C dilution technique for potential successful application in the field and to quantify sources of error in production estimates.Despite the fact that the majority of net14C movement between above- and belowground plant parts occurred between the initial labeling and day 5, significant quantities of14C were incorporated into cell-wall tissue throughout the growing period. The rate of this increase at late sampling dates was greater for roots than for shoots. Total loss of assimilated14C was 47% in wheat and 28% in blue grama. Exudation and sloughing in wheat and blue grama, respectively, was 15 and 6% of total uptake and 22 and 8% of total plant production.When root production estimates by14C dilution were corrected for the quantities of labile14C incorporated into structural carbon between two sampling dates, good agreement with actual production was found. The error associated with these estimates was ±2% compared with a range of –119 to –57% for the uncorrected estimates. Our results suggest that this technique has potential field application if sampling is performed the year after labelling.Sources of errors in harvest versus14C dilution estimates of BNP are discussed.  相似文献   
102.
Seston in the impounded North Anna River (NAR) was analyzed and compared to that in the free-flowing South Anna River (SAR) in Virginia, U.S.A. A wet filtration technique was used to separate seston into five size classes. The overall quantity of organic seston was much lower in the NAR than in the SAR. The seston in the NAR was composed of more living organisms, in particular zooplankters in the medium large (234–864 µm) and small (105–234 µm) size classes and diatoms and other algae in the fine (43–105 µm) and very fine (25–43 µm) size classes. The percentage of zooplankton declined sharply before reaching the downstream study site (32 km). The seston in the NAR tended to consist of slightly larger particles, but 80–85% of the seston in both rivers was in the ultrafine (0.45–25 µm) size class, which was almost entirely composed of detritus. One indication of seston food quality, the organic/inorganic ratio, was considerably higher for the medium large and small size classes in the NAR immediately below the dam and for the fine and very fine size classes farther downstream. Another indication of food quality, the usable caloric content, showed that the seston in the NAR contained considerably less total assimilable energy as far as 32 km downstream from the dam, but that the medium large and small size classes were rich in assimilable energy immediately below the dam because of zooplankton released from the reservoir. Thus, the overall quantity and quality of seston was lower in the NAR, but the quality of the seston, for at least a short distance below the dam, was higher in a well-defined size range that can be effectively utilized by certain filter feeders.  相似文献   
103.
Electron transport system (ETS) activity, CO2 evolution, O2 consumption, N2-fixation (C2H2 reduction) and methanogenesis were appropriately measured in aerobic and anaerobically incubated sediment at 4, 10 and 20 ° C to better characterize these activities under different incubation conditions. ETS activity was always higher in the aerobically incubated sediment at all three incubation temperatures, whereas (C2H2 reduction was always greater in the anaerobic sediment. Carbon dioxide evolution was detected only in the aerobic sediment at 10 and 20 ° C but not at 4 ° C. Methane evolution in anaerobic sediment increased gradually with an increase in the incubation temperature.  相似文献   
104.
Morphine-Induced Changes in Histamine Dynamics in Mouse Brain   总被引:5,自引:5,他引:0  
The effect of the acute morphine treatment on histamine (HA) pools in the brain and the spinal cord was examined in mice. Morphine (1-50 mg/kg, s.c.) administered alone caused no significant change in the steady-state levels of HA and its major metabolite, tele-methylhistamine (t-MH), in the brain. However, depending on the doses tested, morphine significantly enhanced the pargyline (65 mg/kg, i.p.)-induced accumulation of t-MH and this effect was antagonized by naloxone. A specific inhibitor of histidine decarboxylase, alpha-fluoromethylhistidine (alpha-FMH) (50 mg/kg, i.p.), decreased the brain HA level in consequence of the almost complete depletion of the HA pool with a rapid turnover. Morphine further decreased the brain HA level in alpha-FMH-pretreated mice. Morphine administered alone significantly reduced the HA level in the spinal cord, an area where the turnover of HA is very slow. These results suggest that the acute morphine treatment increases the turnover of neuronal HA via opioid receptors, and this opiate also releases HA from a slowly turning over pool(s).  相似文献   
105.
In green leaves and a number of algae, photosynthetically derived carbon is ultimately converted into two carbohydrate end-products, sucrose and starch. Drainage of carbon from the Calvin cycle proceeds via triose phosphate, fructose 6-phosphate and glycollate. Gluconeogenesis in photosynthetic cells is controlled by light, inorganic phosphate and phosphorylated sugars. Light stimulates the production of dihydroxyacetone phosphate, the initial substrate for sucrose and starch synthesis, and inhibits the degradative pathways in the chloroplast. Phosphate inactivates reactions of synthesis and activates reactions of degradation. Among the phosphorylated sugars a special role is allocated to fructose 2,6-bisphosphate, which is present in the cytoplasm at very low concentrations and inhibits sucrose synthesis directly by inactivating pyrophosphatedependent phosphofructokinase. The synthesis of sucrose plays a central role in the partitioning of photosynthetic carbon. The cytoplasmic enzymes, fructose bisphosphate phosphatase and sucrose phosphate synthase are likely key points of regulation. The regulation is carried out by several effector metabolites. Fructose 2,6-bisphosphate is likely to be the main coordinator of the rate of sucrose synthesis, hence of photosynthetic carbon partitioning between sucrose and starch.Paper presented at the FESP meeting (Strasbourg, 1984)  相似文献   
106.
Leaf photosynthesis rate of the C4 species Paspalum plicatulum Michx was virtually CO2-saturated at normal atmospheric CO2 concentration but transpiration decreased as CO2 was increased above normal concentrations thereby increasing transpiration efficiency. To test whether this leaf response led growth to be CO2-sensitive when water supply was restricted, plants were grown in sealed pots of soil as miniature swards. Water was supplied either daily to maintain a constant water table, or at three growth restricting levels on a 5-day drying cycle. Plants were either in a cabinet with normal air (340 mol (CO2) mol-1 (air)) or with 250 mol mol-1 enrichment. Harvesting was by several cycles of defoliation.With abundant water supply high CO2 concentration did not cause increased growth, but it did not cause an increase in growth over a wide range of growth-limiting water supplies either. Only when water supply was less than 30–50% of the amount used by the stand with a water-table was there evidence that dry weight growth was enhanced by high CO2. In addition, with successive regrowth, the enhancing effect under a regime of minimal water allocations, became attenuated. Examination of leaf gas exchange, growth and water use data showed that in the long term stomatal conductance responses were of little significance in matching plant water use to low water allocation; regulation of leaf area was the mechanism through which consumption matched supply. Since high CO2 effects operate principally via stomatal conductance in C4 species, we postulate that for this species higher CO2 concentrations expected globally in future will not have much effect on long term growth.  相似文献   
107.
Abstract The quantitative approach used here is based on a model comprising a well-stirred medium, an unstirred layer, and a CO2 absorbing leaf. The unstirred layer is divided up by planes into a number of sub-layers. Within each plane the concentration of each solute is everywhere the same as is the electric potential. These variables constitute the basic data. Thus the planes were characterized by their pH value. An equation is derived which enables the calculation of the basic data of a plane from the known data of another plane. In this way it is possible to calculate the basic data for all planes. From these data the rate of assimilation, the thickness of the unstirred layer and its sub-layers, the fluxes across the sub-layers and the conversions among the carbon components can be estimated. The CO2 flux decreases, and the HCO?3 flux increases towards the leaf. There are negative fluxes of OH& and CO2–3. H+ fluxes are of minor importance and can be ignored if the pH of the medium is higher than 8.0, provided no non-inorganic C buffers with appropriate pKa are present. The significance of the carbon diffusion facilitating effect of an inorganic carbon system is expressed in various ways. The values obtained represent maxima, as the assumption is made that the equilibrium reactions are very fast. It is argued that even better effects are possible if the back-diffusion of CO2–3 could be prevented by lowering the pH of the unstirred layer.  相似文献   
108.
CO2 uptake and transport in leaf mesophyll cells   总被引:4,自引:3,他引:1  
Abstract The acquisition of inorganic carbon for photosynthetic assimilation by leaf mesophyll cells and chloroplasts is discussed with particular reference to membrane permeation of CO2 and HCO?3. Experimental evidence indicates that at the apoplast pH normally experienced by leaf mesophyll cells (pH 6–7) CO2 is the principal species of inorganic carbon taken up. Uptake of HCO?3 may also occur under certain circumstances (i.e. pH 8.5), but its contribution to the net flux of inorganic carbon is small and HCO?3 uptake does not function as a CO2-concentrating mechanism. Similarly, CO2 rather than HCO?3 appears to be the species of inorganic carbon which permeates the chloroplast envelope. In contrast to many C3 aquatic plants and C4 plants, C3 terrestrial plants lack specialized mechanisms for the acquisition and transport of inorganic carbon from the intercellular environment to the site of photosynthetic carboxylation, but rely upon the diffusive uptake of CO2.  相似文献   
109.
Sulphate reduction in oxic and sub-oxic North-East Atlantic sediments   总被引:3,自引:0,他引:3  
Abstract Oxic and sub-oxic N.-E. Atlantic sediments were examined for sulphate-reducing activity. Oxygen and/or nitrate reduction are probably the dominant mineralisation processes in the abyssal plain sediment studied. A low rate of sulphate reduction (0.1 nmol SO2−4/ml/day) was recorded in the surface 5 cm of the continental slope sediment, together with the presence of a range of sulphate-reducing bacteria (SRB). A higher activity of sulphate reduction (2.2 nmol SO2−4/ml/day) occurred in the continental shelf sediment which led to a small decrease in pore water sulphate and an increase in titration alkalinity. This sediment contained approx. 102–103 acetate, lactate and propionate oxidising SRB/ml. No low- M r organic acids were detected in these sediments. However, amendment with 75 μM acetate stimulated sulphate-reducing activity in the shelf sediment.  相似文献   
110.
The nephrotoxicity of chlorotrifluoroethylene (CTFE) was examined using isolated rabbit renal tubules suspensions. Exposure of the tubules to CTFE resulted in consumption of CTFE, formation of a glutathione conjugate and inhibition of active organic acid transport. Synthetic cysteine, N-acetylcysteine or glutathione conjugates of CTFE inhibited transport indicating S-conjugation as a possible toxic pathway. 1,2-dichlorovinyl glutathione (DCVG), a model synthetic glutathione conjugate, was used to examine the degradation and toxicity of these conjugates. DCVG inhibited rabbit renal tubule transport in vivo and in vitro. The DCVG was found to be degraded with the evolution of glutamine and glycine to produce the ultimate nephrotoxicant, dichlorovinyl cysteine. Dichlorovinyl cysteine is then bioactivated with the release of ammonia. This sequential degradation explains the latency of DCVG-induced renal transport inhibition relative to dichlorovinyl cysteine. It is now evident that certain halogenated ethylenes are capable of being biotransformed to glutathione conjugates in the kidney with their subsequent hydrolysis to nephrotoxic cysteine conjugates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号