首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10718篇
  免费   1911篇
  国内免费   2496篇
  2024年   32篇
  2023年   362篇
  2022年   269篇
  2021年   315篇
  2020年   590篇
  2019年   601篇
  2018年   703篇
  2017年   669篇
  2016年   653篇
  2015年   664篇
  2014年   692篇
  2013年   872篇
  2012年   548篇
  2011年   614篇
  2010年   416篇
  2009年   569篇
  2008年   533篇
  2007年   580篇
  2006年   563篇
  2005年   494篇
  2004年   410篇
  2003年   418篇
  2002年   416篇
  2001年   345篇
  2000年   281篇
  1999年   285篇
  1998年   233篇
  1997年   195篇
  1996年   189篇
  1995年   203篇
  1994年   198篇
  1993年   151篇
  1992年   176篇
  1991年   117篇
  1990年   109篇
  1989年   81篇
  1988年   88篇
  1987年   57篇
  1986年   54篇
  1985年   69篇
  1984年   51篇
  1983年   28篇
  1982年   58篇
  1981年   32篇
  1980年   34篇
  1979年   31篇
  1978年   23篇
  1977年   14篇
  1976年   18篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
Ten soils collected from the major arable areas in Britain were used to assess the availability of soil sulphur (S) to spring wheat in a pot experiment. Soils were extracted with various reagents and the extractable inorganic SO4-S and total soluble S(SO4-S plus a fraction of organic S) were determined using ion chromatography (IC) or inductively-coupled plasma atomic emission spectrometry (ICP-AES), respectively. Water, 0.016 M KH2PO4, 0.01 M CaCl2 and 0.01 M Ca(H2PO4)2 extracted similar amounts of SO4-S, as measured by IC, which were consistently smaller than the total extractable S as measured by ICP-AES. The amounts of organic S extracted varied widely between different extractants, with 0.5 M NaHCO3 (pH 8.5) giving the largest amounts and 0.01 M CaCl2 the least. Organic S accounted for approximately 30–60% of total S extracted with 0.016 M KH2PO4 and the organic C:S ratios in this extract varied typically between 50 and 70. The concentrations of this S fraction decreased in all soils without added S after two months growth of spring wheat, indicating a release of organic S through mineralisation. All methods tested except 0.5 M NaHCO3-ICP-AES produced satisfactory results in the regression with plant dry matter response and S uptake in the pot experiment. In general, 0.016 M KH2PO4 appeared to be the best extractant and this extraction followed by ICP-AES determination was considered to be a good method to standardise on.  相似文献   
152.
Increased biomass production in terrestrial ecosystems with elevated atmospheric CO2 may be constrained by nutrient limitations as a result of increased requirement or reduced availability caused by reduced turnover rates of nutrients. To determine the short-term impact of nitrogen (N) fertilization on plant biomass production under elevated CO2, we compared the response of N-fertilized tallgrass prairie at ambient and twice-ambient CO2 levels over a 2-year period. Native tallgrass prairie plots (4.5 m diameter) were exposed continuously (24 h) to ambient and twice-ambient CO2 from 1 April to 26 October. We compared our results to an unfertilized companion experiment on the same research site. Above- and belowground biomass production and leaf area of fertilized plots were greater with elevated than ambient CO2 in both years. The increase in biomass at high CO2 occurred mainly aboveground in 1991, a dry year, and belowground in 1990, a wet year. Nitrogen concentration was lower in plants exposed to elevated CO2, but total standing crop N was greater at high CO2. Increased root biomass under elevated CO2 apparently increased N uptake. The biomass production response to elevated CO2 was much greater on N-fertilized than unfertilized prairie, particularly in the dry year. We conclude that biomass production response to elevated CO2 was suppressed by N limitation in years with below-normal precipitation. Reduced N concentration in above- and belowground biomass could slow microbial degradation of soil organic matter and surface litter, thereby exacerbating N limitation in the long term.  相似文献   
153.
A field study was undertaken to establish the demand for P by mixed herbage, manipulated by cutting regimes, and the extent to which orthophosphate alone in soil solution could meet this demand from three cambisols derived from different parent materials. Differences in soil types were sufficient to produce significantly different rooting patterns at each site. Yields for 7-and 10-cm treatments generally exceeded those for swards cut to 2-and 4-cm. The highest yields were from plots cut once at the end of the season, or when herbage was cut in June and October only. Yields fell in the second season by an average of 30%. Two cuts in the season resulted in almost twice the P uptake compared with other treatments, leading to the view that a silage cut stimulated root growth. Rooting was deepest in Tarves Association soil (Dystric cambisol), densest in Insch Association soil (Eutric cambisol) and intermediate in Foudland Association soil (Dystric cambisol) but herbage yield at each site was similar. Whole season mean P and N content in roots ranged from 1.0 to 3.4 and from 8.1 to 27.9 mg g–1 dry weight, respectively. The lowest values were in once cut herbage and were half those in herbage cut in June and October only. Data for the total P resources of the soils, extractable P, and shoot and root P at each site are presented together with data for P in soil solution (principally organic) from an associated soil solution study. There was a disparity between daily uptake and orthophosphate in soil solution. These findings suggested that it was probable that soluble organic forms of P are important for P nutrition in these nutrient poor soils, and could account for the excess of observed P uptake (from soils low in P) over that predicted by mechanistic mathematical models.  相似文献   
154.
Amino acid release from roots of sterile and non-sterile, solution-grown, 7-, 21- and 60-days-old forage rape plants (Brassica napus L.), was measured over periods of up to 6 hours. With sterile plants, release of amino acids into a fixed volume of collection medium (6, 12, 70 mL) was concentration-limited, giving rise to similar convex accumulation profiles for individual acids. In contrast, amino acid accumulation in continuously circulating collection medium was not concentration limited, giving a linear accumulation pattern. The compositions of accumulating amino acids, which were similar to those measured in root extracts, did not change significantly. However, the proportions of ALA, GABA, GLU and ILE in both root extracts and root-derived amino acids increased as plants aged. Older plants released more amino acids per plant, while younger plants released more amino acids g-1 root DW. Using non-sterile plants, the patterns of change in amino acid concentration and composition in the collection medium were completely different from those determined with sterile plants. In general, with 7-days-old plants, and 60-days-old plants that had recently become non-sterile, an initial rise in the concentration of all acids was followed by a fall to low levels. The loss of amino acids was apparently due to microbial consumption. Individual amino acids attained maximum concentration at different times during the collection process. This is attributed mainly to concentration-dependent differential assimilation of amino acids, since those with the highest initial concentrations, the major components of the mixtures released from roots, declined the earliest. When calculated rates of amino acid release from roots (Rr) and microbial consumption of amino acids (Rc) were compared (for 7-days-old plants), the highest ratios of Rc/Rr were found for ASN, ARG, GLU, GLN, and LYS. This suggests a degree of selectivity for glutamate and nitrogen-rich acids on the part of the consuming micro-organisms. With 21-days old plants and 60-days old plants grown entirely under non-sterile conditions, fluctuations in amino acid concentration were similar for all acids.  相似文献   
155.
Preston  C. M.  Mead  D. J. 《Plant and Soil》1994,160(2):281-285
Although a high proportion of fertilizer N may be immobilized in organic forms in the soil, no studies have examined the long-term availability of residual fertilizer 15N in forestry situations. We investigated this by growing lodgepole pine (Pinus contorta) seedlings in surface (0–10 cm) soil sample eight years after application of 15N-urea, 15NH4NO3 and NH4 15NO3 to lodgepole pine in interior British Columbia. After nine months of growth in the greenhouse, seedlings took up an average of 8.5% of the 15N and 4.6% of the native N per pot. Most of the mineral N in the pots without seedlings was in the form of nitrate, while pots with seedlings had very low levels of mineral N. In contrast to the greenhouse study, there was no significantuptake of 15N by trees in the field study after the first growing season, although half of the soil organic 15N was lost between one and eight years after fertilization. This indicates the need to understand the mechanisms which limit the uptake of mineral N by trees in the field, and the possible mismatch of tree demand and mineral N availability.  相似文献   
156.
Evaluation of enzyme activities in combination with taxonomic analyses may help define the mechanisms involved in microbial decomposition of orgaic amendments and biological control of soilborne pathogens. In this study, powdered pine bark was added to nematode-infested soil at rates of 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 g kg–1. Total fungal populations did not differ among treatments immediately after application of pine bark. After 7 days, fungal populations were positively correlated with increasing levels of pine bark. This increase was sustained through 14 and 21 days.Penicillium chrysogenum andPaecilomves variotii were the predominant fungal species isolated from soil amended with pine bark. Total bacterial populations did not change with addition of pine bark at 0, 7, and 14 days after treatment. At 21 and 63 days, total bacterial populations declined in soil receiving the highest rates of pine bark. Addition of pine bark powder to soil caused a shift in predominant bacterial genera fromBacillus spp. in nonamended soil, toPseudomonas spp. in amended soil. Soil enzyme activities were positively correlated with pine bark rate at all sampling times. Trehalase activity was positively correlated with total fungal populations and with predominant fungal species, but was not related to bacterial populations. The number of non-parasitic (non-stylet bearing) nematodes andMeloidogyne arenaria in soil and roots were not correlated with pine bark rate. However,Heterodera glycines juveniles in roots, and the number of cysts g–1 root, declined with increasing levels of pine bark.Journal Series Series No. 18-933598 Alabama Agricultural Experiment Station  相似文献   
157.
Vaughan  D.  Cheshire  M. V.  Ord  B. G. 《Plant and Soil》1994,160(2):185-191
The duckweed Lemna gibba required light and a suitable energy source such as sucrose, glucose or fructose, for maximum growth in culture. The requirement for light was relatively unimportant and the plants grew well in a photon flux density of only 52 μmol m-2s-1 PAR. The uptake and incorporation of uniformly labelled 14C-glucose into fronds was related only to the concentration of the sugar. When incubated with soil, labelled L. gibba behaved in a manner similar to that of labelled ryegrass roots which had been produced by a more elaborate technique using a 14CO2 labelled atmosphere. During incubation with soil for 224 days the L. gibba material (specific activity 6133 Bq mg-1 d. wt) lost 64% of its radioactivity as 14CO2 and ryegrass (specific activity 6634 Bq mg-1 d. wt) lost 49%. Alkaline extracted humic and fulvic acids from soil had specific activities for the L. gibba incubation of 3409 and 407 Bq mg-1 solid and for ryegrass roots of 4609 and 546 Bq mg-1 solid respectively. The production of 13C or 14C-labelled L. gibba can be undertaken using only simple equipment producing material the specific radioactivity of which can be controlled by adjusting the activity of the sugar energy source.  相似文献   
158.
Food web studies from a range of ecosystems have demonstrated that the fauna contributes about 30% of total net nitrogen mineralization. This results mainly from the activities of microbial-feeding microfauna (nematodes and protozoa). Microbial and microfaunal activity is concentrated at spatially discrete and heterogeneously distributed organic substrates, including the rhizosphere. The dynamics of microfauna and their effect on nutrient cycling and microbial processes at these sites is reviewed. The potential manipulation of microfauna, either as an experimental tool to further understand soil microbial ecology or as a practical means of managing nutrient flows in agroecosystems, is discussed.  相似文献   
159.
Nutrient distribution in a Swedish tree species experiment   总被引:2,自引:0,他引:2  
The influence of four tree species on the distribution of nutrients between different compartments of the ecosystem was examined. In a randomized block (n=3) experiment in south-western Sweden, Ca, Mg and K were determined as exchangeable amounts in the mineral soil and as total amounts in the O+A1 horizons (topsoil) and in the aboveground tree biomass. N contents were determined in all compartments as well as P contents of the aboveground tree biomass and the topsoil. The four tree species planted were: silver fir [Abies alba Mill.] (AA), grand fir [Abies grandis Lindl.] (AG), Norway spruce [Picea abies L. Karst.] (PA) and Japanese larch [Larix leptolepis (Sieb. och Zucc.) Endl.] (LL). At the age of 35–36 years, the total stemwood production of the most productive species, AG, was estimated at 471 m3 ha−1. In relation to AG, LL had produced 80%, PA 73% and AA 37%. The system totals [aboveground tree biomass total + topsoil total + exchangeable (Ca, Mg, K) or total (N) in the mineral soil] of Ca, K and N did not differ significantly at the 5% level between the investigated species. For Mg, the system total in LL was significantly higher than for the other species. There was an indication that LL and AA contained higher amounts of Ca, Mg, K and N in the topsoil but less in the biomass than did AG and PA (partly significant). In the mineral soil, there were no significant differences in the exchangeable pools of Ca and K, nor in the total amounts of N. The biomass nutrient concentrations generally decreased in the order: AA > PA > AG > LL. At stem or whole-tree harvest, the Ca export per biomass unit would more than double in the case of PA compared to LL. LL also contained less N in the biomass than the other species. However, the N content in the biomass did not differ between the most (AG) and the least (AA) productive species, although the production of dry weight biomass (standing + harvested) of AG had been twice that of AA. It is concluded that the nutrient budget of a managed forest may vary considerably depending on the choice of tree species.  相似文献   
160.
Iron toxicity is suspected to be a major nutritional disorder in rice cropping systems established on flooded organic soils that contain reductible iron. A pot trial was carried out to assess Fe toxicity to rice in flooded Burundi highland swamp soils with a wide range of organic carbon contents. Soil and leaf analyses were performed and total grain weight was determined. Clear Fe toxicity was diagnosed, based on leaf Fe content at panicle differentiation. Leaf Fe contents higher than 250 g g–1 dry matter induced lower Mg (and probably Mn) uptake, and a 50% total grain weight reduction. These features were associated with exchangeable Fe equivalent fractions higher than 86%. Besides, several non-Fe toxic soils exhibited an Mg-Mn imbalance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号