首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6061篇
  免费   380篇
  国内免费   614篇
  2023年   62篇
  2022年   69篇
  2021年   124篇
  2020年   147篇
  2019年   177篇
  2018年   141篇
  2017年   162篇
  2016年   150篇
  2015年   185篇
  2014年   269篇
  2013年   308篇
  2012年   211篇
  2011年   315篇
  2010年   222篇
  2009年   289篇
  2008年   312篇
  2007年   329篇
  2006年   286篇
  2005年   225篇
  2004年   205篇
  2003年   204篇
  2002年   186篇
  2001年   166篇
  2000年   163篇
  1999年   148篇
  1998年   119篇
  1997年   118篇
  1996年   123篇
  1995年   118篇
  1994年   108篇
  1993年   119篇
  1992年   111篇
  1991年   97篇
  1990年   97篇
  1989年   79篇
  1988年   73篇
  1987年   70篇
  1986年   65篇
  1985年   91篇
  1984年   94篇
  1983年   90篇
  1982年   98篇
  1981年   82篇
  1980年   72篇
  1979年   53篇
  1978年   21篇
  1977年   29篇
  1976年   24篇
  1975年   13篇
  1974年   14篇
排序方式: 共有7055条查询结果,搜索用时 15 毫秒
141.
Peeter Kangur 《Hydrobiologia》1996,338(1-3):173-177
The population of bream in L. Peipsi was studied with respect to age, growth rate, condition factor (according to Fulton) and length-weight relationship in 1994. That autumn the bream population in L. Peipsi consisted of fishes aged from 0+ to 15+. During the first year bream reached an average body length of 7.9 cm (the commercial legal size (30 cm) was usually attained by the end of the 5th–6th year. The condition of bream in this lake was above the average of Estonian lakes. The relatively good growth rate and condition of bream in the lake indicates that the waterbody is appropriate for this fish.  相似文献   
142.
Glutamine Transport in Mouse Cerebral Astrocytes   总被引:1,自引:0,他引:1  
Abstract: We measured initial influx and exchange of [14C]glutamine in primary astrocyte cultures in the presence and absence of Na+. Kinetic analysis of transport in Na+-free solution indicated two saturable Na+-independent components, one of which was identifiable functionally as system L1 transport. In the presence of Na+, multiple hyperbolic components were not resolvable from the kinetic data. Nevertheless, other evidence supported participation by at least three Na+-dependent neutral amino acid transporters (systems A, ASC, and N). System A transport of glutamine was usually absent or minimal, based on lack of inhibition by α-(methylamino)isobutyric acid. However, vigorous system A-mediated transport emerged after derepression by substrate deprivation. Participation by system ASC was indicated by trans-acceleration of Na+-dependent uptake, preferential inhibition of an Li+-intolerant component of uptake by cysteine, and inhibition by cysteine of a component resistant to inhibition by histidine and α-(methylamino)isobutyric acid. Because nonsaturable transport of glutamine appeared negligible, and system L transport of glutamine was suppressed in the presence of Na+, low-affinity system ASC transport may be the major route of export of glutamine from astrocytes. At 700 µ M glutamine, the primary uptake route was system N transport, identified on the basis of selective inhibition by histidine and asparagine, pH sensitivity, and tolerance of Li+ in place of Na+.  相似文献   
143.
For millenaria, maternal mortality has been considered as a fatality inherent to women's condition. Thanks to the progress of the obstetric technology, the world M.M.R. fell from 2.000 to 400 per 100.000 births during the past 150 years. At the same time women's condition improved chiefly because of a better level of education. Is there any relationship between them: the decrease of Maternal Mortality and the amelioration of women's general status? Or, in other words, can the decrease of Maternal Mortality Rate be considered as an “indicator” of the situation of women? After a historical review of the importance of the maternal mortality drama as it occured in older times before the “obstetric era”, which began with the improvement of the obstetric technology, this paper will present the actual situation of maternal mortality in relation with the obstetric coverage, the female literacy level and some other socio-economic variables, and in relation with the Gross National Product (G.N.P.) as an indicator of governmental interest in the specific female problems of giving-life.  相似文献   
144.
Using primary cultures of gill pavement cells from freshwater rainbow trout, a method is described for achieving confluent monolayers of the cells on glass coverslips. A continuous record of intracellular pH was obtained by loading the cells with the pH-sensitive flourescent dye 2,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein and mounting the coverslips in the flowthrough cuvette of a spectrofluorimeter. Experiments were performed in HEPES-buffered media nominally free of HCO3. Resting intracellular pH (7.43 at extracellular pH=7.70) was insensitive to the removal of Cl or the application of 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (0.1 mmol·l–1), but fell by about 0.3 units when Na+ was removed or in the presence of amiloride (0.2 mmol·l–1). Exposure to elevated ammonia (ammonia prepulse; 30 mmol·l–1 as NH4Cl for 6–9 min) produced an increase in intracellular pH (to about 8.1) followed by a slow decay, and washout of the pulse caused intracellular pH to fall to about 6.5. Intracellular non-HCO 3 buffer capacity was about 13.4 slykes. Rapid recovery of intracellular pH from intracellular acidosis induced by ammonia prepulse was inhibited more than 80% in Na+-free conditions or in the presence of amiloride (0.2 mmol·l–1). Neither bafilomycin A1 (3 mol·l–1) nor Cl removal altered the intracellular pH recovery rate. The K m for Na+ of the intracellular pH recovery mechanism was 8.3 mmol·l–1, and the rate constant at V max was 0.008·s–1 (equivalent to 5.60 mmol H+·l–1 cell water·min–1), which was achieved at external Na+ levels from 25 to 140 mmol·l–1. We conclude that intracellular pH in cultured gill pavement cells in HEPES-buffered, HCO 3 -free media, both at rest and during acidosis, is regulated by a Na+/H+ antiport and not by anion-dependent mechanisms or a vacuolar H+-ATPase.Abbreviations BCECF 2,7-bis(2-carboxyethyl)-5(6)-carboxy-fluorescein - BCECF/AM 2,7-bis(2-carboxyethyl)-5(6)-carboxy-fluorescein, acetoxymethylester - Cholin-Cl choline chloride - DMSO dimethyl sulfoxide - EDTA ethylene diamine tetra-acetic acid - FBS foetal bovine serum - H + -ATPase Proton-dependent adenosine triphosphatase - HEPES N-[2-hydroxyethyl]piperazine-N[2-ethanesulfonic acid] - pH i intracellular pH - pH e extracellular pH - PBS phosphate-buffered saline - SITS 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid  相似文献   
145.
146.
Overexpression of the MDR protein, or p-glycoprotein (p-GP), in cells leads to decreased initial rates of accumulation and altered intracellular retention of chemotherapeutic drugs and a variety of other compounds. Thus, increased expression of the protein is related to increased drug resistance. Since several homologues of the MDR protein (CRP, ltpGPA, PDR5, sapABCDF) are also involved in conferring drug resistance phenomena in microorganisms, elucidating the function of the MDR protein at a molecular level will have important general applications. Although MDR protein function has been studied for nearly 20 years, interpretation of most data is complicated by the drug-selection conditions used to create model MDR cell lines. Precisely what level of resistance to particular drugs is conferred by a given amount of MDR protein, as well as a variety of other critical issues, are not yet resolved. Data from a number of laboratories has been gathered in support of at least four different models for the MDR protein. One model is that the protein uses the energy released from ATP hydrolysis to directly translocate drugs out of cells in some fashion. Another is that MDR protein overexpression perturbs electrical membrane potential () and/or intracellular pH (pHi) and therebyindirectly alters translocation and intracellular retention of hydrophobic drugs that are cationic, weakly basic, and/or that react with intracellular targets in a pHi, or -dependent manner. A third model proposes that the protein alternates between drug pump and Cl channel (or channel regulator) conformations, implying that both direct and indirect mechanisms of altered drug translocation may be catalyzed by MDR protein. A fourth is that the protein acts as an ATP channel. Our recent work has tested predictions of these models via kinetic analysis of drug transport and single-cell photometry analysis of pHi, , and volume regulation in novel MDR and CFTR transfectants that have not been exposed to chemotherapeutic drugs prior to analysis. This paper reviews these data and previous work from other laboratories, as well as relevant transport physiology concepts, and summarizes how they either support or contradict the different models for MDR protein function.  相似文献   
147.
Abstract: The bacterial community response to pH was studied for 16 soils with pH(H2O) ranging between 4 and 8 by measuring thymidine incorporation into bacteria extracted from the soil into a solution using homogenization-centrifugation. The pH of the bacterial solution was altered to six different values with dilute sulfuric acid or different buffers before measuring incorporation. The resulting pH response curve for thymidine incorporation was used to compare bacterial communities from the different soils. There was a correlation between optimum pH for thymidine incorporation and the soil pH(H2O). Even bacterial communities from acid soils had optima corresponding to the soil pH, indicating that they were adapted to these conditions. Thymidine incorporation was also compared with leucine incorporation for some soils. The leucine to thymidine incorporation ratio was constant over the tested pH interval when incorporation values were adjusted for isotope dilution. A good correlation was found between the scores along the first component (explaining 80% of the variation) and soil pH ( r 2 = 0.85), if principal component analysis of the pH response curves for thymidine incorporation was used. The pH response curves differed most for the extreme pH values used, and a linear relationship was found between the logarithm of the ratio of thymidine incorporation at pH 4.3 to incorporation at pH 8.2 and the soil pH ( r 2 = 0.86). Thus, a simplified technique using only two pH values, when measuring the thymidine incorporation, could be used to compare the response to pH of bacterial communities.  相似文献   
148.
Stahlberg R  Cosgrove DJ 《Planta》1996,200(4):416-425
Slow wave potentials (SWPs) are transient depolarizations which propagate substantial distances from their point of origin. They were induced in the epidermal cells of pea epicotyls by injurious methods such as root excision and heat treatment, as well as by externally applied defined steps in xylem pressure (Px) in the absence of wounding. The common principle of induction was a rapid increase in Px. Such a stimulus appeared under natural conditions after (i) bending of the epicotyl, (ii) wounding of the epidermis, (iii) rewatering of dehydrated roots, and (iv) embolism. The induced depolarization was not associated with a change in cell input resistance. This result and the ineffectiveness of ion channel blockers point to H(+)-pumps rather than ion channels as the ionic basis of the SWP. Stimuli such as excision, heat treatment and pressure steps, which generate SWPs, caused a transient increase in the fluorescence intensity of epicotyls loaded with the pH-indicator DM-NERF, a 2',7'-dimethyl derivative of rhodol, but not of those loaded with the pH indicator 2',7'bis(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). Matching kinetics of depolarization and pH response identify a transient inactivation of proton pumps in the plasma membrane as the causal mechanism of the SWP. Feeding pump inhibitors to the cut surface of excised epicotyls failed to chemically simulate a SWP; cyanide, azide and 2,4-dinitrophenol caused sustained, local depolarizations which did not propagate. Of all tested substances, only sodium cholate caused a transient and propagating depolarization whose arrival in the growing region of the epicotyl coincided with a transient growth rate reduction.  相似文献   
149.
Atmospheric ammonia (NH3) from various anthropogenic sources has become a serious problem for natural vegetation. Ammonia not only causes changes in plant nitrogen metabolism, but also affects the acid-base balance of plants. Using the pH-sensitive fluorescent dyes pyranine and esculin, cytosolic and vacuolar pH changes were measured in leaves of C3 and C4 plants exposed for brief periods to concentrations of NH3 in air ranging from 1.33 to 8.29 mol NH3 · mol-1 gas (0.94–5.86 mg · m-3). After a lag phase, uptake of NH3 from air at a rate of 200 nmol NH3 · m - 2 leaf area · s- 1 into leaves of Zea mays L. increased pyranine fluorescence indicating cytosolic alkalinisation. The increase was much larger in the dark than in the light. In illuminated leaves of the C3 plant Pelargonium zonale L. and the C4 plants Z. mays and Amaranthus caudatus L., NH3-dependent cytosolic alkalinisation was particularly pronounced when CO2 was supplied at very low levels (16 or 20 mol CO2 · mol- 1 gas, containing 210 mmol O2 · mol- 1 gas). An increase in esculin fluorescence, which was smaller than that of pyranine, was indicative of trapping of some of the NH3 in the vacuoles of leaves of Spinacia oleracea L. and Z. mays. Photosynthesis and transpiration remained unchanged during exposure of illuminated leaves to NH3, yielding an influx of 200 nmol NH3 · m-2 leaf area · s-1 for up to 30 min, the longest exposure time used. Both CO2 and O2 influenced the extent of cytosolic alkalinisation. At 500 mol CO2 · mol-1 gas the cytosolic alkalinisation was suppressed more than at 16 or 20 mol CO2 · mol-1 gas. The suppressing effect of CO2 on the NH3induced alkalinisation was larger in illuminated leaves of the C4 plants Z. mays and A. caudatus than in leaves of the C3 plant P. zonale. A reduction of the O2 concentration from 210 to 10 mmol O2 · mol -1 gas, which inhibits photorespiration, increased the NH3induced cytosolic alkalinisation in C3 plants. Suppression by CO2 or O2 of the alkaline pH shift caused by the dissolution and protonation of NH3 in queous leaf compartments, and possibly by the production of organic compounds synthesised from atmospheric NH3, indicates that NH3 which enters leaves is rapidly assimilated if photosynthesis or photorespiration provide nitrogen acceptor molecules.This work was supported by the Biotechnology and Biological Sciences Research Council and the Deutsche Forschungsgemein-schaft within the framework of the research of Sonderforschun-gsbreich 251 of the University of Würzburg. We are grateful to Dr. B. Wollenweber (The Royal Veterinary and Agricultural University, Denmark) for discussions.  相似文献   
150.
Microspore culture is a very important and useful tool in plant breeding for haploid production and has been developed for many years.Brassica campestris (Brassica rapa L. ssp.oleifera) is an important oilseed crop, but it is relatively recalcitrant in tissue culture including microspore culture. The microspore culture in our laboratory is based on the Canadian protocol. Thirty genotypes ofB. campestris were included in this study; twenty produced embryos. The highest yield was 5930 embryos per 100 buds from Canadian genotype Cv-2, this result was one of the best that had been reported in microspore culture inB. campestris. The buds measuring 2.0 mm to 3.9 mm in length responded best to produce embryos, the optimum timing for microspore culture was confirmed to be during the mid-late to very-late uninucleate stage. The buds could be removed from either the main raceme or lateral racemes. Activated charcoal (150 mg l-1) was added to the liquid NLN medium, it promoted embryogenesis significantly; embryo development was faster and the embryo yield was significantly higher than those cultures without activated charcoal. The donor plant condition was considered an important factor influencing embryogenesis; older donor plants (older than five weeks) and a cold treatment are recommended.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号