首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8901篇
  免费   1007篇
  国内免费   1161篇
  2024年   17篇
  2023年   163篇
  2022年   175篇
  2021年   277篇
  2020年   347篇
  2019年   400篇
  2018年   350篇
  2017年   348篇
  2016年   380篇
  2015年   345篇
  2014年   382篇
  2013年   552篇
  2012年   377篇
  2011年   385篇
  2010年   337篇
  2009年   378篇
  2008年   440篇
  2007年   493篇
  2006年   420篇
  2005年   361篇
  2004年   360篇
  2003年   351篇
  2002年   309篇
  2001年   289篇
  2000年   240篇
  1999年   268篇
  1998年   208篇
  1997年   228篇
  1996年   183篇
  1995年   144篇
  1994年   142篇
  1993年   146篇
  1992年   141篇
  1991年   137篇
  1990年   126篇
  1989年   107篇
  1988年   124篇
  1987年   80篇
  1986年   65篇
  1985年   86篇
  1984年   105篇
  1983年   51篇
  1982年   55篇
  1981年   43篇
  1980年   43篇
  1979年   20篇
  1978年   16篇
  1977年   26篇
  1974年   11篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Gas exchange and abscisic acid content of Digitalis lanata EHRH. have been examined at different levels of plant water stress. Net photosynthesis, transpiration and conductance of attached leaves declined rapidly at first, then more slowly following the withholding of irrigation. The intercellular partial pressure of CO2 decreased slightly. The concentration of 2-cis(S)ABA increased about eight-fold in the leaves of non-irrigated plants as compared with well-watered controls. A close linear correlation was found between the ABA content of the leaves and their conductance on a leaf area basis. In contrast, the plot of net assimilation versus ABA concentration was curvilinear, leading to an increased efficiency of water use during stress. After rewatering, photosynthesis reached control values earlier than transpiration, leaf conductance and ABA content. From these data it is concluded that transpiration through the stomata is directly controlled by the ABA content, whereas net photosynthesis is influenced additionally by other factors.Possible reasons for the responses of photosynthesis and water use efficiency to different stress and ABA levels are discussed.Abbreviations A net CO2 assimilation - ABA abscisic acid - Ci intercellular CO2 concentration - g stomatal conductance - T transpiration - WUE water use efficiency  相似文献   
52.
Leaf age and larval performance of the leaf beetle Paropsis atomaria   总被引:1,自引:0,他引:1  
ABSTRACT.
  • 1 Larval performance of the leaf beetle Paropsis atomaria Oliver was determined for larvae raised on both new and mature leaves of Eucalyptus blakelyi Maiden. Larvae were transferred to mature leaves at different ages; control larvae stayed on new leaves through all instars.
  • 2 Only larvae reared on new leaves through the third instar survived to pupate on mature leaves; developmental time was prolonged by 20% and pupal weight was reduced by 50% in these larvae compared with larvae reared entirely on new leaves. Almost all larvae died when transferred to mature leaves as first, second or third instars.
  • 3 Low survival and slow development on mature leaves was mainly due to failure by larvae to feed. Larvae palpated leaves and could discriminate among leaf ages immediately, without biting into the leaf tissue.
  • 4 New leaves had higher concentrations of oil and tannins than old leaves, while there were no significant differences in nitrogen concentrations in the two types of leaves. Mature leaves were more than 3 times tougher than new leaves, in terms of g mm?2 of penetrometer force.
  • 5 In drought years E. blakelyi may not produce sufficient new leaves to supply specialist herbivores with their preferred food resource. We infer that drought years reduce P. atomaria larval performance significantly, and influence the population dynamics of the insect.
  相似文献   
53.
Age structure of nematode populations around maize growing in sandy soils in Iowa was studied at soil depths of 0-15and 15-30 cm for 2 years. Numbers of Longidorus breviannulatus were generally greater at 0-15 cm than at 15-30 cm deep until mid to late season. The decline in numbers of females as the season progressed indicates that fecundity slowed and is evidence of only one generation per year. Peak populations of Pratylenchus scribneri and Xiphinema americanum occurred in late August or early September. Adults of Hoplolaimus galeatus were few in the roots but common in the soil, indicating that fertilization occurred mostly in the soil. Numbers of P. scribneri were generally greater at the lower depth, especially late in the season. Community diversity (H'') was less when nematode biomass was used instead of numbers. Numbers of H. galeatus did not decline over the winter. Numbers of L. breviannulatus, P. scribneri, and X. americanum declined significantly over the winter, but not between spring cultivation and planting.  相似文献   
54.
A venerid bivalve Phacosoma japonicum (Reeve) occurring commonly in the Japanese coastal area preserves periodic growth lines in the shell cross-section. Long-term shell growth patterns of this species have been traced for many individuals on the intertidal flat of the Seto Inland Sea, west Japan. Sclerochronological analysis of these individuals and specimens collected monthly shows that several growth cessation marks within their shells are formed during the winter of each year prior to spawning. Hence the marks were used for age and growth rate determinations. As large individuals showed little shell growth for more than two years after the formation of 7 or 8 annual increments, this species probably has a lifespan of more than ten years. Shell growth patterns of this species based on annual increments can be accurately approximated by a von Bertalanffy curve. The number of microgrowth increments formed during a year tends to decrease with age, although it varies markedly among specimens of the same age. Furthermore, even in summer during rapid shell growth, the microgrowth increments do not represent daily and/or sub-daily tidal rhythms in many specimens. The results of this study and those by several authors strongly suggest that the annual increments are the key for age and growth rate determinations of both living and fossil bivalve species.  相似文献   
55.
Fructan biosynthesis in excised leaves of Lolium temulentum L.   总被引:10,自引:10,他引:0  
  相似文献   
56.
Leaf senescence and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBP carboxylase, EC 4.1.1.39) degradation in orange [ Citrus sinensis (L.) Osbeck cv. Washington Navel] explants have been investigated. Explants consisted of a segment of stem (ca 15 cm) and 5 mature leaves. In vitro RuBP carboxylase degradation was determined by culturing the explants in water for different periods of time (3 days usually) and quantifying the two RuBP carboxylase subunits in the extracts following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In vitro RuBP carboxylase degradation was estimated by autodigestion of leaf extracts and SDS-PAGE. The extent of in vivo RuBP carboxylase degradation in explants cultured under 16 h light/8 h dark photoperiod varied throughout the year and showed a cyclic behaviour correlated with the growth cycle of Citrus. The highest proteolytic activity both in vivo and in vitro was found in explants made from April to August coinciding with the maximum vegetative growth period of the tree.
Leaf senescence and abscission could be retarded significantly at any time of the year by maintaining the explants continuously in the dark. Treatment of the explants in the dark with a continuous flow of ethylene enhanced both leaf abscission and rate of RuBP carboxylase degradation, proportionally to ethylene concentration (0.1-0.6 ppm). Ethylene-induced senescence of Citrus leaf explants in the dark appears to be a convenient model system to study the regulation of the proteolytic degradation of RuBP carboxylase.  相似文献   
57.
Almond plants (Amygdalus communis L.) of the Garrigues variety were grown in the field drip irrigated and rainfed. Leaf water potential (Ψ) and leaf conductance (g1) were determined throughout one growing season. Pre-dawn measurement for Ψ in the irrigated treatment was consistent through the growing season, whereas in the rainfed treatment it decreased gradually. Ψ values at midday (Ψ minimum) was closely dependent on atmospheric evaporative demand, and their recovery was quicker in the wet treatment than in the dry. The g1 values were higher in the wet than dry treatments, decreasing in both cases by leaf ageing. Maximum values for g1 were reached when evaporative demand was highest in the day. The relationship between Ψ and g1 revealed a decrease in the hysteresis throughout the growing season, being most marked in the dry treatment. The results highlight the close dependence of Ψ and g1 on evaporative demand, leaf ageing and irrigtion treatment during the growing season.  相似文献   
58.
Almond plants (Amygdalus communis L. cv. Garrigues) were grown in the field under drip irrigated and non irrigated conditions. Leaf water potential () and leaf conductance (g1) were determined at three different times of the growing season (spring, summer and autumn). The relationships between and g1 in both treatments showed a continuous decrease of g1 as decreased in spring and summer. Data from the autumn presented a threshold value of (approx. –2.7 MPa in dry treatment, and approx. –1.4 MPa in wet treatment) below which leaf conductance remained constant.  相似文献   
59.
Stomatal sensing of the environment   总被引:1,自引:0,他引:1  
The effects of environmental factors on stomatal behaviour are reviewed and the questions of whether photosynthesis and transpiration eontrol stomata or whether stomata themselves control the rates of these processes is addressed. Light affects stomata directly and indirectly. Light can act directly as an energy source resulting in ATP formation within guard cells via photophosphorylation, or as a stimulus as in the case of the blue light effects which cause guard cell H+ extrusion. Light also acts indirectly on stomata by affecting photosynthesis which influences the intercellular leaf CO2 concentration ( C i). Carbon dioxide concentrations in contact with the plasma membrane of the guard cell or within the guard cell acts directly on cell processes responsible for stomatal movements. The mechanism by which CO2 exerts its effect is not fully understood but, at least in part, it is concerned with changing the properties of guard cell plasma membranes which influence ion transport processes. The C i may remain fairly constant for much of the day for many species which is the result of parallel responses of stomata and photosynthesis to light. Leaf water potential also influences stomatal behaviour. Since leaf water potential is a resultant of water uptake and storage by the plant and transpirational water loss, any factor which affects these processes, such as soil water availability, temperature, atmospheric humidity and air movement, may indirectly affect stomata. Some of these factors, such as temperature and possibly humidity, may affect stomata directly. These direct and indirect effects of environmental factors interact to give a net opening response upon which is superimposed a direct effect of stomatal circadian rhythmic activity.  相似文献   
60.
The kinetic parameters of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (EC 4.1.1.39) in wheat (Triticum aestivum L.) and rice (Oryza sativa L.) were determined by rapidly assaying the leaf extracts. The respective K m and V max values for carboxylase and oxygenase activities were significantly higher for wheat than for rice. In particular, the differences in the V max values between the two species were greater. When the net activity of CO2 exchange was calculated at the physiological CO2-O2 concentration from these kinetic parameters, it was 22% greater in wheat than in rice. This difference in the in-vitro RuBP-carboxylase/oxygenase activity between the two species reflected a difference in the CO2-assimilation rate per unit of RuBP-carboxylase protein. However, there was no apparent difference in the CO2-assimilation rate for a given leaf-nitrogen content between the two species. When the RuBP-carboxylase/oxygenase activity was estimated at the intercellular CO2 pressure from the enzyme content and kinetic parameters, these estimated enzyme activities in wheat and rice were similar to each other for the same rate of CO2 assimilation. These results indicate that the difference in the kinetic parameters of RuBP carboxylase between the two species was offset by the differences in RuBP-carboxylase content and conductance for a given leaf-nitrogen content.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic - PAR photosynthetically active radiation - RuBP ribulose-1,5-bisphosphate  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号