首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   795篇
  免费   51篇
  国内免费   29篇
  2023年   11篇
  2022年   8篇
  2021年   22篇
  2020年   30篇
  2019年   38篇
  2018年   44篇
  2017年   26篇
  2016年   28篇
  2015年   42篇
  2014年   93篇
  2013年   88篇
  2012年   43篇
  2011年   63篇
  2010年   44篇
  2009年   53篇
  2008年   48篇
  2007年   47篇
  2006年   31篇
  2005年   37篇
  2004年   30篇
  2003年   22篇
  2002年   10篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有875条查询结果,搜索用时 62 毫秒
871.
Engraft cells are often exposed to oxidative stress and inflammation; therefore, any factor that can provide the stem cells resistance to these stresses may yield better efficacy in stem cell therapy. Studies indicate that histone deacetylase (HDACs) inhibitors alleviate damage induced by oxidative stress. In this study, we investigated whether regulation of reactive oxygen species (ROS) occurs through the HDAC inhibitor trichostatin A (TSA) in human bone marrow‐mesenchymal stem cells (hBM‐MSCs). Intracellular ROS levels increased following exposure to hydrogen peroxide (H2O2), and were suppressed by TSA treatment. Levels of the antioxidant enzyme superoxide dismutase 2 (SOD2) increased following treatment with 200 nM TSA and to a lesser level at 1–5 μM TSA. Cell protective effects against oxidative stress were significantly increased in TSA‐MSCs after treatment with low doses of TSA (50–500 nM) and decreased with high doses of TSA (5–10 μM). Consistent results were obtained with immunoblot analysis for caspase3. Investigation of Forkhead box O1 (FOXO1), superoxide dismutase 2 (SOD2), and p53 levels to determine intracellular signaling by TSA in oxidative stress‐induced MSCs demonstrated that expression of phosphorylated‐FOXO1 and phosphorylated‐SOD2 decreased in H2O2‐treated MSCs while levels of p53 increased. These effects were reversed by the treatment of 200 nM TSA. These results suggest that the main function of ROS modulation by TSA is activated through SOD2 and FOXO1. Thus, optimal treatment with TSA may protect hBM‐MSCs against oxidative stress. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
872.
Chitin deacetylase (CDA) is a hydrolytic enzyme that modifies chitin into chitosan in the body of insects. In this study, we obtained a full-length complementary DNA sequence (MsCDA1) from the oriental armyworm Mythimna separata by high-throughput sequencing. MsCDA1 is 1,952 bp long and includes 1,620 bp open reading frame encoding 539 amino acids. Analysis by quantitative real time polymerase chain reaction showed that MsCDA1 expression was higher at the adult stage than at earlier developmental stages. MsCDA1 was expressed in all larval tissues examined, in which the highest expression level was found in the midgut. The RNA interference (RNAi) suppressed MsCDA1 expression levels at 12, 24, and 48 hr after injection of double-stranded RNA (1–4 μg per larva) specific to MsCDA1. Under RNAi condition, CDA enzyme activity was significantly reduced and changes an ultramicroscopic structure of M. separata peritrophic matrix especially in its microfibrillar organization exhibiting loose network. In contrast, the surface of the peritrophic matrix was relatively smooth and well organized at control or low RNAi conditions. Moreover, RNAi of MsCDA1 expression impaired larval growth and development, occasionally leading to larval death. These results demonstrate that MsCDA1 plays a crucial role in maintaining peritrophic matrix integrity in M. separata.  相似文献   
873.
874.
875.
Hypertension and endothelial dysfunction are associated with various cardiovascular diseases. Hydrogen sulphide (H2S) produced by cystathionine γ‐lyase (CSE) promotes vascular relaxation and lowers hypertension. Honokiol (HNK), a natural compound in the Magnolia plant, has been shown to retain multifunctional properties such as anti‐oxidative and anti‐inflammatory activities. However, a potential role of HNK in regulating CSE and hypertension remains largely unknown. Here, we aimed to demonstrate that HNK co‐treatment attenuated the vasoconstriction, hypertension and H2S reduction caused by angiotensin II (AngII), a well‐established inducer of hypertension. We previously found that histone deacetylase 6 (HDAC6) mediates AngII‐induced deacetylation of CSE, which facilitates its ubiquitination and proteasomal degradation. Our current results indicated that HNK increased endothelial CSE protein levels by enhancing its stability in a sirtuin‐3‐independent manner. Notably, HNK could increase CSE acetylation levels by inhibiting HDAC6 catalytic activity, thereby blocking the AngII‐induced degradative ubiquitination of CSE. CSE acetylation and ubiquitination occurred mainly on the lysine 73 (K73) residue. Conversely, its mutant (K73R) was resistant to both acetylation and ubiquitination, exhibiting higher protein stability than that of wild‐type CSE. Collectively, our findings suggested that HNK treatment protects CSE against HDAC6‐mediated degradation and may constitute an alternative for preventing endothelial dysfunction and hypertensive disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号