首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2562篇
  免费   24篇
  国内免费   26篇
  2024年   2篇
  2023年   11篇
  2022年   17篇
  2021年   20篇
  2020年   29篇
  2019年   40篇
  2018年   46篇
  2017年   30篇
  2016年   21篇
  2015年   16篇
  2014年   192篇
  2013年   213篇
  2012年   123篇
  2011年   240篇
  2010年   204篇
  2009年   162篇
  2008年   170篇
  2007年   184篇
  2006年   199篇
  2005年   154篇
  2004年   138篇
  2003年   100篇
  2002年   111篇
  2001年   7篇
  2000年   7篇
  1999年   2篇
  1998年   10篇
  1997年   5篇
  1996年   14篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1990年   1篇
  1988年   1篇
  1985年   5篇
  1984年   19篇
  1983年   12篇
  1982年   12篇
  1981年   13篇
  1980年   11篇
  1979年   6篇
  1978年   4篇
  1977年   7篇
  1976年   6篇
  1975年   10篇
  1974年   5篇
  1973年   2篇
  1972年   10篇
  1971年   3篇
排序方式: 共有2612条查询结果,搜索用时 312 毫秒
21.
22.
Human placental microsomes were incubated with [3H]benzo[a]pyrene (BP) and Salmon sperm DNA and the resulting metabolite-nucleoside complexes resolved by Sephadex LH-20 chromatography. The metabolite pattern was analyzed by high-pressure liquid chromatography (HPLC). The incubates were also co-chromatographed with extracts obtained from incubates with rat liver microsomes and [14C]BP. Phenols, quinones and 7,8-dihydrodiol were detected in the placental incubates. Both 9,10- and 4,5-dihydrodiols were very low as compared with control rat liver samples. Placental microsomes catalyzed the binding of BP metabolites to DNA in vitro, giving rise to two main complexes which co-chromatographed with rat liver-produced peaks attributable to 7,8-diol-9,10-epoxide and 7,8-oxide and/or quinones when metabolized further. The nucleoside metabolite peaks attributable to 4,5-oxide and 9-phenol-4,5-oxide were lacking when compared with the binding pattern catalyzed by rat liver. Both the total binding and specific metabolite-nucleoside adducts in the placenta correlated with fluorometrically measured aryl hydrocarbon hydroxylase (AHH) activity and with the amount of dihydrodiol formed. The results demonstrate that both the metabolite pattern and the nucleoside-metabolite complexes formed by the placental microsomes in vitro differed greatly from those produced by rat liver microsomes. These studies also suggest that it is not possible to predict specific patterns of DNA binding from AHH measurements or even from BP metabolite patterns, especially when comparing different tissues and species.  相似文献   
23.
The pH dependence of the binding of weakly acidic uncouplers of oxidative phosphorylation to rat-liver mitochondria and liposomes is mainly determined by the pKa of the uncoupler molecule.

The absorption and fluorescence excitation spectra of the anionic form of weakly acidic uncouplers of oxidative phosphorylation are red-shifted upon interaction with liposomal or mitochondrial membranes. The affinity for the liposomes, as deduced from the red shift, is independent of the degree of saturation of the fatty acid chains of different lecithins. The intensity of the spectra at one pH value is strongly dependent upon the surface charge of the liposomes. With positively charged liposomes the results obtained can be almost quantitatively explained with the Gouy-Chapman theory, but with negatively charged ones deviations are observed. At a particular pH, the divalent ion Ca2+ strongly influences the intensity of the spectra in the presence of negatively charged liposomes, but has no effect with neutral liposomes.

With mitochondrial membranes an effect of Ca2+ similar to that with negatively charged liposomes is observed. Depletion of the phospholipids of the mitochondria and subsequent restoration of the mitochondrial membrane with lecithin, strongly diminishes this effect, but restoration with negatively charged phospholipids does not influence it.

From these observations it is concluded that the anionic form of the uncoupler molecule when bound to mitochondria is located within the partly negatively charged phospholipid moiety of the membrane, with its anionic group pointing to the aqueous solution.  相似文献   

24.
25.
D K Lee  C E Bird  A F Clark 《Steroids》1975,26(1):137-147
The metabolism of testosterone (T) was studied in normal adult male rats using a constant infusion of trace amounts of the 3H-steroid into a tail vein for 3 h in order to attain a state of equilibrium. Samples of plasma, liver, kidney, prostate, seminal vesicles and muscle were analysed for 3H-testosterone, 3H-5alpha-dihydrotestosterone (5alphaDHT) and 3H-5alpha-androstanediol (Adiol). When compared to the 3H-T level in plasma there were high levels of 3H-T in kidney and of 3H-5alphaDHT in prostate and seminal vesicles. Intraperitoneal estradiol valerate administration (100 mug/day) for 4 days decreased and 3H-5alphaDHT levels in the prostate and seminal vesicles. The estrogen administration increased the T metabolic clearance rate from 17.5 1/24 h/100 g body wt to 22.6 1/24 h/100 g body wt.  相似文献   
26.
Small heat shock proteins (sHsps) are a family of large and dynamic oligomers highly expressed in long-lived cells of muscle, lens and brain. Several family members are upregulated during stress, and some are strongly cytoprotective. Their polydispersity has hindered high-resolution structure analyses, particularly for vertebrate sHsps. Here, crystal structures of excised α-crystallin domain from rat Hsp20 and that from human αB-crystallin show that they form homodimers with a shared groove at the interface by extending a β sheet. However, the two dimers differ in the register of their interfaces. The dimers have empty pockets that in large assemblies will likely be filled by hydrophobic sequence motifs from partner chains. In the Hsp20 dimer, the shared groove is partially filled by peptide in polyproline II conformation. Structural homology with other sHsp crystal structures indicates that in full-length chains the groove is likely filled by an N-terminal extension. Inside the groove is a symmetry-related functionally important arginine that is mutated, or its equivalent, in family members in a range of neuromuscular diseases and cataract. Analyses of residues within the groove of the αB-crystallin interface show that it has a high density of positive charges. The disease mutant R120G α-crystallin domain dimer was found to be more stable at acidic pH, suggesting that the mutation affects the normal dynamics of sHsp assembly. The structures provide a starting point for modelling higher assembly by defining the spatial locations of grooves and pockets in a basic dimeric assembly unit. The structures provide a high-resolution view of a candidate functional state of an sHsp that could bind non-native client proteins or specific components from cytoprotective pathways. The empty pockets and groove provide a starting model for designing drugs to inhibit those sHsps that have a negative effect on cancer treatment.  相似文献   
27.
28.
Acetyl-CoA carboxylase α (ACCα) is a major rate-limiting enzyme in the biogenesis of long-chain fatty acids. It can catalyze the carboxylation of acetyl-CoA to form malonyl-CoA that plays a key role in the regulation of fatty acid metabolism. The objective of the present study was to investigate the associations of ACCα gene polymorphisms with chicken growth and body composition traits. The Northeast Agricultural University broiler lines divergently selected for abdominal fat content and the Northeast Agricultural University F2 Resource Population were used in the current study. Body weight and body composition traits were measured in the aforementioned two populations. A synonymous mutation was detected in the exon 19 region of ACCα gene, then polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was developed to genotype all the individuals derived from the aforementioned populations. Association analysis revealed that the polymorphism was associated with abdominal fat weight and percentage of abdominal fat in the two populations. The results suggested that ACCα gene could be a candidate locus or linked to a major gene that affects abdominal fat content in the chicken.  相似文献   
29.
Escherichia coli YicI is a retaining α-xylosidase, which strictly recognizes the α-xylosyl moiety at the non-reducing end, belonging to glycoside hydrolase family 31 (GH 31). We have elucidated key residues determining the substrate specificity at both glycone and aglycone sites of Escherichia coli α-xylosidase (YicI). Detection of distinguishing features between α-xylosidases and α-glucosidases of GH 31 in their close evolutionary relationship has been used for the modification of protein function, converting YicI into an α-glucosidase. Aglycone specificity has been characterized by its transxylosylation ability. YicI exhibits a preference for aldopyranosyl sugars having equatorial 4-OH as the acceptor substrate with 1,6 regioselectivity, resulting in transfer products. The disaccharide transfer products of YicI, α-d-Xylp-(1→6)-d-Manp, α-d-Xylp-(1→6)-d-Fruf, and α-d-Xylp-(1→3)-d-Frup, are novel oligosaccharides, which have never been reported. The transxylosylation products are moderately inhibitory towards intestinal α-glucosidases.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号