首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3464篇
  免费   279篇
  国内免费   163篇
  2024年   5篇
  2023年   44篇
  2022年   49篇
  2021年   79篇
  2020年   81篇
  2019年   117篇
  2018年   110篇
  2017年   90篇
  2016年   101篇
  2015年   93篇
  2014年   197篇
  2013年   216篇
  2012年   139篇
  2011年   193篇
  2010年   172篇
  2009年   177篇
  2008年   229篇
  2007年   213篇
  2006年   215篇
  2005年   188篇
  2004年   140篇
  2003年   142篇
  2002年   140篇
  2001年   83篇
  2000年   97篇
  1999年   80篇
  1998年   78篇
  1997年   61篇
  1996年   68篇
  1995年   43篇
  1994年   44篇
  1993年   33篇
  1992年   50篇
  1991年   19篇
  1990年   12篇
  1989年   13篇
  1988年   11篇
  1987年   9篇
  1986年   4篇
  1985年   9篇
  1984年   12篇
  1983年   5篇
  1982年   3篇
  1981年   9篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1974年   5篇
  1973年   3篇
排序方式: 共有3906条查询结果,搜索用时 46 毫秒
91.
Phototherapy can be used in two completely different but complementary therapeutic applications. While low level laser (or light) therapy (LLLT) uses red or near-infrared light alone to reduce inflammation, pain and stimulate tissue repair and regeneration, photodynamic therapy (PDT) uses the combination of light plus non-toxic dyes (called photosensitizers) to produce reactive oxygen species that can kill infectious microorganisms and cancer cells or destroy unwanted tissue (neo-vascularization in the choroid, atherosclerotic plaques in the arteries). The recent development of nanotechnology applied to medicine (nanomedicine) has opened a new front of advancement in the field of phototherapy and has provided hope for the development of nanoscale drug delivery platforms for effective killing of pathological cells and to promote repair and regeneration. Despite the well-known beneficial effects of phototherapy and nanomaterials in producing the killing of unwanted cells and promoting repair and regeneration, there are few reports that combine all three elements i.e. phototherapy, nanotechnology and, tissue repair and regeneration. However, these areas in all possible binary combinations have been addressed by many workers. The present review aims at highlighting the combined multi-model applications of phototherapy, nanotechnology and, reparative and regeneration medicine and outlines current strategies, future applications and limitations of nanoscale-assisted phototherapy for the management of cancers, microbial infections and other diseases, and to promote tissue repair and regeneration.  相似文献   
92.
Laboratory experiments were conducted to study the impact of laser irradiation on the larvae of the fouling barnacle Balanus amphitrite. Research pertaining to fouling invertebrate larvae‐laser interaction is sparse and, hence, data on this aspect were thought significant in order to consider pulsed low power laser irradiations as a possible future antifouling tool. Lethal and sub‐lethal impacts of four very low laser fluences, viz. 0.013, 0.025, 0.05 and 0.1 J cm‐2 for three different durations, viz. 2, 10 and 30 s were investigated. Three growth stages of barnacle larvae, viz. nauplii stage II, nauplii stage IV and cyprids were exposed to the mentioned laser fluences for different durations. While lethal impact was assessed immediately after and 1 d after irradiation, sub‐lethal impacts were studied by monitoring the success rate of the irradiated nauplii in reaching the cyprid stage. In addition, the swimming speed of VIth stage nauplii after irradiation was studied. In the case of cyprids, in addition to the mortality measurement immediately after and 1 d after irradiation, the settlement rate was investigated. In all the above experiments, non‐irradiated larvae served as controls. The results showed an increase in mortality with increasing laser fluence and duration of irradiation. Irradiation for 2 s resulted in significant mortality in nauplii, while it was less in the case of cyprids. In IInd stage nauplii, the mortality immediately after irradiation for 2 s varied from 14.8±2.12 to 97.1±4.1% for laser fluences of 0.013 and 0.1 J cm‐2, respectively. However, in cyprids, the mortality immediately after irradiation for 2 s varied from 12.2±3 to 13.4±1.2% for fluences of 0.013 and 0.1 J cm‐2, respectively. The mortality in IVth stage nauplii was less than that for IInd stage nauplii but more than that for cyprids. There was a significant increase in mortality with time after irradiation. The formation of cyprids from the irradiated larvae was significantly less than that observed for non‐irradiated larvae. Also, the irradiated larvae showed a significantly slower swimming speed compared to the control samples. The settlement rate in cyprids was reduced significantly by the laser irradiation. This was true even for the lowest fluence and shortest period of irradiation tested. Thus, the results of the experiment showed that even a low power pulsed laser irradiation of 0.013 J cm‐2 for 2 s can cause significant damage to fouling barnacle larvae.  相似文献   
93.
Legumes form a symbiotic interaction with Rhizobiaceae bacteria, which differentiate into nitrogen‐fixing bacteroids within nodules. Here, we investigated in vivo the pH of the peribacteroid space (PBS) surrounding the bacteroid and pH variation throughout symbiosis. In vivo confocal microscopy investigations, using acidotropic probes, demonstrated the acidic state of the PBS. In planta analysis of nodule senescence induced by distinct biological processes drastically increased PBS pH in the N2‐fixing zone (zone III). Therefore, the PBS acidification observed in mature bacteroids can be considered as a marker of bacteroid N2 fixation. Using a pH‐sensitive ratiometric probe, PBS pH was measured in vivo during the whole symbiotic process. We showed a progressive acidification of the PBS from the bacteroid release up to the onset of N2 fixation. Genetic and pharmacological approaches were conducted and led to disruption of the PBS acidification. Altogether, our findings shed light on the role of PBS pH of mature bacteroids in nodule functioning, providing new tools to monitor in vivo bacteroid physiology.  相似文献   
94.
Alginate-dextran sulfate (ADS) microgel has been used to protect insulin from gastrointestinal attack and as a carrier to promote insulin permeation through intestinal epithelium. The throughput of ADS submicron particles generation by emulsification/internal gelation is limited by its wide size distribution.  相似文献   
95.
Identification of mineral-associated biosignatures is of significance for retrieving biochemical information from geological records here on Earth and for detecting signs of life on other planets, such as Mars. An investigation using laser desorption Fourier transform mass spectrometry was conducted to determine whether geomatrix-assisted laser desorption/ionization (GALDI) can be used to detect amino acids (e.g., histidine, threonine, and cysteine) and small proteins (e.g., gramicidin S) associated with mineral phases and whether the geomatrix impacts detection. Iron oxide (Fe2 O 3 ) and sodium chloride (NaCl) were investigated as clean chemical analogues of hematite and halite, respectively, which have both been detected on the surface of Mars. Samples were prepared by 2 methods: (1) application of analyte solution to the geomatrix surface with subsequent drying; and (2) physical mixing of analyte and geomatrix. Amino acids incorporated within NaCl by physical mixing yielded a better signal-to-noise ratio than those that were applied to the surface of a NaCl pellet. The composition of the geomatrix had an influence on the detection of biomolecules. Peaks corresponding to the cation-attached biomolecular ions were observed for the NaCl prepared samples. However, no biomolecular ion species were observed in samples using Fe 2 O 3 as geomatrix. Instead, only minor peaks that may correspond to ions derived from fragments of the biomolecules were obtained.  相似文献   
96.
Micrometric membrane lipid segregation is controversial. We addressed this issue in attached erythrocytes and found that fluorescent boron dipyrromethene (BODIPY) analogs of glycosphingolipids (GSLs) [glucosylceramide (BODIPY-GlcCer) and monosialotetrahexosylganglioside (GM1BODIPY)], sphingomyelin (BODIPY-SM), and phosphatidylcholine (BODIPY-PC inserted into the plasma membrane spontaneously gathered into distinct submicrometric domains. GM1BODIPY domains colocalized with endogenous GM1 labeled by cholera toxin. All BODIPY-lipid domains disappeared upon erythrocyte stretching, indicating control by membrane tension. Minor cholesterol depletion suppressed BODIPY-SM and BODIPY-PC but preserved BODIPY-GlcCer domains. Each type of domain exchanged constituents but assumed fixed positions, suggesting self-clustering and anchorage to spectrin. Domains showed differential association with 4.1R versus ankyrin complexes upon antibody patching. BODIPY-lipid domains also responded differentially to uncoupling at 4.1R complexes [protein kinase C (PKC) activation] and ankyrin complexes (in spherocytosis, a membrane fragility disease). These data point to micrometric compartmentation of polar BODIPY-lipids modulated by membrane tension, cholesterol, and differential association to the two nonredundant membrane:spectrin anchorage complexes. Micrometric compartmentation might play a role in erythrocyte membrane deformability and fragility.  相似文献   
97.
The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis. Recent developments in MALDI mass spectrometry imaging (MSI) enable rapid and specific detection of lipids directly from thin tissue sections. In this study, we performed multimodal imaging of acylcarnitines, phosphatidylcholines (PC), a lysophosphatidylcholine (LPC), and a sphingomyelin (SM) from different microenvironments of breast tumor xenograft models, which carried tdTomato red fluorescent protein as a hypoxia-response element-driven reporter gene. The MSI molecular lipid images revealed spatially heterogeneous lipid distributions within tumor tissue. Four of the most-abundant lipid species, namely PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), and PC(18:0/18:1), were localized in viable tumor regions, whereas LPC(16:0/0:0) was detected in necrotic tumor regions. We identified a heterogeneous distribution of palmitoylcarnitine, stearoylcarnitine, PC(16:0/22:1), and SM(d18:1/16:0) sodium adduct, which colocalized primarily with hypoxic tumor regions. For the first time, we have applied a multimodal imaging approach that has combined optical imaging and MALDI-MSI with ion mobility separation to spatially localize and structurally identify acylcarnitines and a variety of lipid species present in breast tumor xenograft models.  相似文献   
98.
Microalgae contain lipid bodies (LBs) composed of triacylglycerols, which can be converted to biodiesel. Here we demonstrate a method to study the accumulation patterns of LBs in different microalgae strains and culture conditions utilizing laser scanning confocal microscopy (LSCM) with BODIPY 505/515 (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene) staining, in parallel with Nile Red (9-diethylamino-5H-benzo-a-phenoxazine-5-one) fluorescence analysis of intracellular lipids in microplates. Phaeodactylum tricornutum and Tetraselmis suecica were selected as model organisms and monitored throughout the growth phases in standard and nitrogen-deficient growth conditions. Utilizing image quantification techniques, the number and morphology of LBs suggest that P. tricornutum accumulates lipids by merging with existing LBs, while T. suecica synthesizes new LBs. We observed that T. suecica accumulates a higher number of LBs and total volume of lipids per cell, while P. tricornutum accumulates only 1–2 LBs with a larger volume per LB. LSCM analysis complements Nile Red (NR) methods because LSCM provides three-dimensional images of lipid accumulation at a cellular level, while NR analysis can quickly monitor the total levels of intracellular lipids for phenotypic screening. Using NR analysis, we have observed that the optimal harvest date for P. tricornutum and T. suecica in standard cultivation conditions is 24 and 42 days, respectively. Comparison with nitrogen-deficient growth conditions is utilized as a model to confirm that LSCM and NR analysis can be used to study lipid storage and productivity for diverse growth conditions and various strains of microalgae.  相似文献   
99.
Lactoferrin, an iron-binding protein found in high concentrations in mammalian exocrine secretions, is an important component of the host defense system. It is also a major protein of the secondary granules of neutrophils from which is released upon activation. Due to its potential clinical utility, recombinant human lactoferrin (rhLF) has been produced in various eukaryotic expression systems; however, none of these are fully compatible with humans. Most of the biopharmaceuticals approved by the FDA for use in humans are produced in mammalian expression systems. The Chinese hamster ovary cells (CHO) have become the system of choice for proteins that require post-translational modifications, such as glycoproteins.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号