首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2624篇
  免费   227篇
  国内免费   81篇
  2932篇
  2024年   7篇
  2023年   63篇
  2022年   68篇
  2021年   78篇
  2020年   88篇
  2019年   123篇
  2018年   87篇
  2017年   97篇
  2016年   115篇
  2015年   88篇
  2014年   97篇
  2013年   153篇
  2012年   88篇
  2011年   99篇
  2010年   86篇
  2009年   140篇
  2008年   159篇
  2007年   129篇
  2006年   104篇
  2005年   109篇
  2004年   81篇
  2003年   79篇
  2002年   77篇
  2001年   60篇
  2000年   81篇
  1999年   69篇
  1998年   55篇
  1997年   40篇
  1996年   42篇
  1995年   38篇
  1994年   39篇
  1993年   32篇
  1992年   28篇
  1991年   36篇
  1990年   26篇
  1989年   21篇
  1988年   26篇
  1987年   16篇
  1986年   21篇
  1985年   18篇
  1984年   11篇
  1983年   9篇
  1982年   9篇
  1981年   9篇
  1980年   7篇
  1979年   5篇
  1978年   9篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
排序方式: 共有2932条查询结果,搜索用时 0 毫秒
61.
62.
Abstract

Internationally, birds of prey are often reported as being relatively prone to collision with wind turbines in comparison to other groups of birds. However, as yet it is unclear to what extent New Zealand's only endemic bird of prey, the New Zealand falcon (Falco novaeseelandiae), is at risk. In this paper we summarise the potential for wind farms to impact New Zealand falcon, evaluate the efficacy of a range of risk assessment and post-consent monitoring practices, and present options for mitigating and/or offsetting any residual effects. We conclude that the lack of knowledge on the effects of wind farms on New Zealand falcon is the result of inconsistency in the assessment methods thus far employed and the absence of a coordinated approach to monitoring methods and the dissemination of results. To remedy this we present a risk assessment framework that, if adopted, will provide the information necessary to ensure alternative energy targets can be met without compromising the conservation of this threatened species.  相似文献   
63.
《Cell metabolism》2020,31(6):1068-1077.e3
  1. Download : Download high-res image (161KB)
  2. Download : Download full-size image
  相似文献   
64.
While NLRP3‐inflammasome has been implicated in cardiovascular diseases, its role in physiological cardiac aging is largely unknown. During aging, many alterations occur in the organism, which are associated with progressive impairment of metabolic pathways related to insulin resistance, autophagy dysfunction, and inflammation. Here, we investigated the molecular mechanisms through which NLRP3 inhibition may attenuate cardiac aging. Ablation of NLRP3‐inflammasome protected mice from age‐related increased insulin sensitivity, reduced IGF‐1 and leptin/adiponectin ratio levels, and reduced cardiac damage with protection of the prolongation of the age‐dependent PR interval, which is associated with atrial fibrillation by cardiovascular aging and reduced telomere shortening. Furthermore, old NLRP3 KO mice showed an inhibition of the PI3K/AKT/mTOR pathway and autophagy improvement, compared with old wild mice and preserved Nampt‐mediated NAD+ levels with increased SIRT1 protein expression. These findings suggest that suppression of NLRP3 prevented many age‐associated changes in the heart, preserved cardiac function of aged mice and increased lifespan.  相似文献   
65.
Elevated atmospheric carbon dioxide (eCO2) is predicted to increase growth rates of forest trees. The extent to which increased growth translates to changes in biomass is dependent on the turnover time of the carbon, and thus tree mortality rates. Size‐ or age‐dependent mortality combined with increased growth rates could result in either decreased carbon turnover from a speeding up of tree life cycles, or increased biomass from trees reaching larger sizes, respectively. However, most vegetation models currently lack any representation of size‐ or age‐dependent mortality and the effect of eCO2 on changes in biomass and carbon turnover times is thus a major source of uncertainty in predictions of future vegetation dynamics. Using a reduced‐complexity form of the vegetation demographic model the Functionally Assembled Terrestrial Ecosystem Simulator to simulate an idealised tropical forest, we find increases in biomass despite reductions in carbon turnover time in both size‐ and age‐dependent mortality scenarios in response to a hypothetical eCO2‐driven 25% increase in woody net primary productivity (wNPP). Carbon turnover times decreased by 9.6% in size‐dependent mortality scenarios due to a speeding up of tree life cycles, but also by 2.0% when mortality was age‐dependent, as larger crowns led to increased light competition. Increases in aboveground biomass (AGB) were much larger when mortality was age‐dependent (24.3%) compared with size‐dependent (13.4%) as trees reached larger sizes before death. In simulations with a constant background mortality rate, carbon turnover time decreased by 2.1% and AGB increased by 24.0%, however, absolute values of AGB and carbon turnover were higher than in either size‐ or age‐dependent mortality scenario. The extent to which AGB increases and carbon turnover decreases will thus depend on the mechanisms of large tree mortality: if increased size itself results in elevated mortality rates, then this could reduce by about half the increase in AGB relative to the increase in wNPP.  相似文献   
66.
Understory fires represent an accelerating threat to Amazonian tropical forests and can, during drought, affect larger areas than deforestation itself. These fires kill trees at rates varying from < 10 to c. 90% depending on fire intensity, forest disturbance history and tree functional traits. Here, we examine variation in bark thickness across the Amazon. Bark can protect trees from fires, but it is often assumed to be consistently thin across tropical forests. Here, we show that investment in bark varies, with thicker bark in dry forests and thinner in wetter forests. We also show that thinner bark translated into higher fire‐driven tree mortality in wetter forests, with between 0.67 and 5.86 gigatonnes CO2 lost in Amazon understory fires between 2001 and 2010. Trait‐enabled global vegetation models that explicitly include variation in bark thickness are likely to improve the predictions of fire effects on carbon cycling in tropical forests.  相似文献   
67.
The brown marmorated stink bug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), is an invasive pest that attacks specialty and row crops in North America and Europe. There has been a concerted effort to reduce frequent broad-spectrum insecticide applications made on vulnerable crops. One tool that has emerged recently is the use of long-lasting insecticide-treated nets (LLINs) as a killing agent. Here, we conducted bioassays to evaluate the effect of direct contact on deltamethrin-impregnated LLINs on the behaviour and survivorship of H. halys nymphs and adults in the laboratory. Following exposure at three different durations (1.25, 4.25 or 7.25 min), vertical and horizontal mobility of adults and nymphs and the flight capacity of adults were recorded and compared with individuals that were not exposed (control). Exposure to LLINs reduced the horizontal distance and velocity and increased the angular velocity of adults only but reduced vertical mobility of adults and nymphs. Adult flights were not significantly affected by LLIN exposure. Mortality of adults and nymphs at 7-day post-exposure ranged from 73% to 77% regardless of exposure time. We discuss our findings within the context of the potential for and limitations of deploying LLINs in vulnerable crops to manage H. halys populations.  相似文献   
68.
Continued Arctic warming and sea‐ice loss will have important implications for the conservation of ringed seals, a highly ice‐dependent species. A better understanding of their spatial ecology will help characterize emerging ecological trends and inform management decisions. We deployed satellite transmitters on ringed seals in the summers of 2011, 2014, and 2016 near Utqia?vik (formerly Barrow), Alaska, to monitor their movements, diving, and haul‐out behavior. We present analyses of tracking and dive data provided by 17 seals that were tracked until at least January of the following year. Seals mostly ranged north of Utqia?vik in the Beaufort and Chukchi Seas during summer before moving into the southern Chukchi and Bering Seas during winter. In all seasons, ringed seals occupied a diversity of habitats and spatial distributions, from near shore and localized, to far offshore and wide‐ranging in drifting sea ice. Continental shelf waters were occupied for >96% of tracking days, during which repetitive diving (suggestive of foraging) primarily to the seafloor was the most frequent activity. From mid‐summer to early fall, 12 seals made ~1‐week forays off‐shelf to the deep Arctic Basin, most reaching the retreating pack‐ice, where they spent most of their time hauled out. Diel activity patterns suggested greater allocation of foraging efforts to midday hours. Haul‐out patterns were complementary, occurring mostly at night until April‐May when midday hours were preferred. Ringed seals captured in 2011—concurrent with an unusual mortality event that affected all ice‐seal species—differed morphologically and behaviorally from seals captured in other years. Speculations about the physiology of molting and its role in energetics, habitat use, and behavior are discussed; along with possible evidence of purported ringed seal ecotypes.  相似文献   
69.
70.
Anthropogenic features increasingly affect ecological processes with increasing human demand for natural resources. Such effects also have the potential to vary depending on the sex and age of an individual because of inherent behavioral and life experience differences. For the lesser prairie-chicken (Tympanuchus pallidicinctus), studies on male survival are limited because most previous research has been focused on females. To better understand patterns of lesser prairie-chicken survival in habitat with varying levels of anthropogenic infrastructure associated with oil and natural gas development, we monitored survival of 178 radio-tagged male and female lesser prairie-chickens in eastern New Mexico, USA, from 2013 to 2015. We examined the relationships of shrub cover, proximity to and density of anthropogenic features (i.e., utility poles), displacement of natural vegetation by anthropogenic features (i.e., area of roads and well pads), and individual demographics (i.e., sex, age) with lesser prairie-chicken survival. Furthermore, we categorized the probable cause of mortality and examined its relationship with oil and gas development intensity (indexed by utility pole density) within 1,425 m of an individual's mortality site or final observed location. We predicted that survival would be lower for individuals exposed to greater levels of anthropogenic features, and that males and subadults would be more negatively affected than females and adults because of increased exposure to predators during the lekking season and naiveté. Relationships between survival and utility pole density, sex, and age were supported in our top-ranked models, whereas models including other anthropogenic and natural features (i.e., roads, well pads, shrub cover) received little support. We predicted a substantial decrease in adult and subadult male survival with increasing densities of utility poles. The relationship between survival and utility pole density for females was weaker and not as clearly supported as for males. We did not find a detectable difference in utility pole counts among probable mortality causes. Our findings highlight the importance of including male lesser prairie-chickens in research and conservation planning, and the negative effect that high densities of anthropogenic features can have on lesser prairie-chicken survival. © 2021 The Wildlife Society.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号