首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   7篇
  国内免费   4篇
  2023年   4篇
  2022年   4篇
  2021年   7篇
  2020年   6篇
  2019年   8篇
  2018年   5篇
  2017年   1篇
  2016年   5篇
  2015年   11篇
  2014年   14篇
  2013年   15篇
  2012年   9篇
  2011年   15篇
  2010年   10篇
  2009年   8篇
  2008年   14篇
  2007年   12篇
  2006年   7篇
  2005年   11篇
  2004年   13篇
  2003年   7篇
  2002年   7篇
  2001年   2篇
  2000年   5篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
排序方式: 共有249条查询结果,搜索用时 304 毫秒
81.
Galectins, a group of β-galactoside-binding lectins, are involved in multiple functions through specific binding to their oligosaccharide ligands. No previous work has focused on their interaction with glycosaminoglycans (GAGs). In the present work, affinities of established members of human galectins toward a series of GAGs were investigated, using frontal affinity chromatography. Structurally-defined keratan sulfate (KS) oligosaccharides showed significant affinity to a wide range of galectins if Gal residue(s) remained unsulfated, while GlcNAc sulfation had relatively little effect. Consistently, galectins showed much higher affinity to corneal type I than cartilageous type II KS. Unexpectedly, galectin-3, -7, and -9 also exerted significant affinity to desulfated, GalNAc-containing GAGs, i.e., chondroitin and dermatan, but not at all to hyaluronan and N-acetylheparosan. These observations revealed that the integrity of 6-OH of βGalNAc is important for galectin recognition of these galactosaminoglycans, which were shown, for the first time, to be implicated as potential ligands of galectins.  相似文献   
82.
《Developmental neurobiology》2017,77(12):1401-1412
In the brain, the extracellular matrix (ECM) plays a central role during neural development and thus modulates critical‐period regulated behavioral ontogeny. The major components of the ECM are glycosaminoglycans (GAGs) including chondroitin sulfate (CS). However, the specific roles of GAGs in behavioral development are largely unknown. It has been shown that xylosides affect the biological functions of GAGs through modulating GAG biosynthesis. Particularly, xylosides affect GAG biosynthesis through priming of GAG chains (priming activity), competing with endogenous core proteins that carry GAG initiation sites (decoy activity), or both. Using birdsong as our model, we investigated, for the first time, how xyloside‐mediated modulation of GAG biogenesis affects song development. Xylosides infused into motor cortex of juvenile birds alter song development by specifically affecting ontogeny of the stereotyped sequence rather than the acoustic structure of syllables. Further analyses reveal that observed changes can be attributed to the priming activity rather than the decoy activity of xylosides. Collectively, these results suggest that regulation of GAG biogenesis through chemical biology approaches may allow promising therapeutic interventions of critical‐period‐dependent central nervous system plasticity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1401–1412, 2017  相似文献   
83.
Immunological studies were carried out on the proteoglycans from chick epiphyseal cartilage and rat chondrosarcoma. The results from immunodiffusion and direct radioimmune precipitation assays appear to indicate that each proteoglycan subunit has both species-specific and species-common antigenic determinants. Reduction and alkylation abolished the antigenicity of the species-specific antigenic determinants of both proteoglycan preparations as determined by immunodiffusion and radioimmune inhibition assays. Some, not all, of the species-common antigenic determinants also were sensitive to the treatment.  相似文献   
84.
85.
Several lines of evidence have suggested roles for proteoglycans (PGs) in acetylcholine receptor (AChR) clustering on muscle cells. One line of evidence comes from the correlation between a defect in the biosynthesis of glycosaminoglycans (GAGs), the defining carbohydrates of PGs, and the failure of spontaneous AChR clustering in the S27 cell line, a genetic variant of the C2 muscle cell line. Two approaches were used in the present study to investigate whether GAG and AChR clustering defects are causally linked. First, the formation of AChR clusters was examined in two more variant lines, S11 and S26, also isolated from the C2 muscle cell line on the basis of deficiencies in GAG biosynthesis. S11 and S26, like S27, are also defective in AChR clustering. Ion exchange analysis of the GAGs made by the S11, S26, and S27 lines revealed that the defects in GAG biosynthesis differ between the three lines. Second, heterokaryon myotubes formed between pairs of the GAG defective variants were tested for complementation in both AChR clustering and GAG biosynthesis. AChR clusters were conspicuous on individual heterokaryon myotubes, and GAG biosynthesis was restored to near wild type levels in the heterokaryon cultures. Complementation in GAG biosynthesis corroborates the biochemical data that the relevant mutations in the genetic variants are in different genes and establishes that the defects are not dominant. The consistent correlation between GAG defects and the failure of AChR clustering across three independent genetic variants and the complementary association of GAG biosynthesis with AChR clustering in heterokaryon myotubes argues against a chance association of the two phenotypes and for a causal relationship between PGs and AChR clustering. A prominent chondroitin sulfate peak correlated with AChR clustering in the heterokaryon cultures. This is consistent with earlier results suggesting that chondroitin sulfate in general is required for the spontaneous clustering of AChRs in C2 cultures and further suggests that a particular chondroitin sulfate proteoglycan may be essential for the clustering process. © 1996 John Wiley & Sons, Inc.  相似文献   
86.
Glycosaminoglycans (GAGs) from breast cyst fluid (BCF) of gross cysts, subdivided into apocrine and flattened, directly collected from 27 gross‐cystic‐breast‐disease (GCBD)‐affected women were analysed. Heparan sulfate, not further investigated, and chondroitin sulfate were identified. This last polysaccharide, in a content of 25–27 µg ml?1 BCF and having a high molecular mass (~20 000–22 000), was found rich in glucuronic acid (~96%–98%) and mainly sulfated in position 4 of the N‐acetyl‐galactosamine (~60%–64%). Moreover, the presence of ~19%–24% of uncommon 4,6‐O‐disulfated disaccharides CS‐E inside the polysaccharide chains with a high charge density of ~1.15–1.20 was determined. No substantial differences between apocrine and flattened cysts were observed. The current study describes the first effort to examine the yield and distribution of complex macromolecules like GAGs in BCF, and the understanding of their structure may help explain some functions associated with physiological and pathological conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
87.
Glioblastoma (GBM) is the most common and malignant primary brain tumor. The extracellular matrix, also known as the matrisome, helps determine glioma invasion, adhesion, and growth. Little attention, however, has been paid to glycosylation of the extracellular matrix components that constitute the majority of glycosylated protein mass and presumed biological properties. To acquire a comprehensive understanding of the biological functions of the matrisome and its components, including proteoglycans (PGs) and glycosaminoglycans (GAGs), in GBM tumorigenesis, and to identify potential biomarker candidates, we studied the alterations of GAGs, including heparan sulfate (HS) and chondroitin sulfate (CS), the core proteins of PGs, and other glycosylated matrisomal proteins in GBM subtypes versus control human brain tissue samples. We scrutinized the proteomics data to acquire in-depth site-specific glycoproteomic profiles of the GBM subtypes that will assist in identifying specific glycosylation changes in GBM. We observed an increase in CS 6-O sulfation and a decrease in HS 6-O sulfation, accompanied by an increase in unsulfated CS and HS disaccharides in GBM versus control samples. Several core matrisome proteins, including PGs (decorin, biglycan, agrin, prolargin, glypican-1, and chondroitin sulfate proteoglycan 4), tenascin, fibronectin, hyaluronan link protein 1 and 2, laminins, and collagens, were differentially regulated in GBM versus controls. Interestingly, a higher degree of collagen hydroxyprolination was also observed for GBM versus controls. Further, two PGs, chondroitin sulfate proteoglycan 4 and agrin, were significantly lower, about 6-fold for isocitrate dehydrogenase-mutant, compared to the WT GBM samples. Differential regulation of O-glycopeptides for PGs, including brevican, neurocan, and versican, was observed for GBM subtypes versus controls. Moreover, an increase in levels of glycosyltransferase and glycosidase enzymes was observed for GBM when compared to control samples. We also report distinct protein, peptide, and glycopeptide features for GBM subtypes comparisons. Taken together, our study informs understanding of the alterations to key matrisomal molecules that occur during GBM development. (Data are available via ProteomeXchange with identifier PXD028931, and the peaks project file is available at Zenodo with DOI 10.5281/zenodo.5911810).  相似文献   
88.
Chondroitin sulfate A (CSA) is a valuable glycosaminoglycan that has great market demand. However, current synthetic methods are limited by requiring the expensive sulfate group donor 3′-phosphoadenosine-5′-phosphosulfate (PAPS) and inefficient enzyme carbohydrate sulfotransferase 11 (CHST11). Herein, we report the design and integration of the PAPS synthesis and sulfotransferase pathways to realize whole-cell catalytic production of CSA. Using mechanism-based protein engineering, we improved the thermostability and catalytic efficiency of CHST11; its Tm and half-life increased by 6.9°C and 3.5 h, respectively, and its specific activity increased 2.1-fold. Via cofactor engineering, we designed a dual-cycle strategy of regenerating ATP and PAPS to increase the supply of PAPS. Through surface display engineering, we realized the outer membrane expression of CHST11 and constructed a whole-cell catalytic system of CSA production with an 89.5% conversion rate. This whole-cell catalytic process provides a promising method for the industrial production of CSA.  相似文献   
89.
Structural characteristics of glycosaminoglycans (GAGs) derived from axonally transported proteoglycans (PGs) were compared in 21 day regenerating and intact goldfish optic tracts. Twenty one days following unilateral optic nerve crushes, fish received intraocular injections of35SO4. Eight hours post injection, tracts were removed and the35SO4-labeled GAGs, chondroitin sulfate (CS) and heparan sulfate (HS), isolated. The HS from regenerating optic tracts had a DEAE elution profile indicative of decreased charge density, while heparitinase treatment of HS followed by Sephadex G50 analysis of the resulting fragments showed a change in the elution pattern, suggesting reduced overall sulfation. HPLC analysis of HS disaccharides revealed a difference in the sulfation pattern of regenerating tract HS, characterized by the reduced presence of tri-sulfated disaccharides. Other structural features, such as the sizes of CS and HS, and the sulfation of CS, showed no changes during regeneration. These results indicate that changes in the structure of axonally transported HS accompany regeneration of goldfish optic axons.  相似文献   
90.
High-performance liquid chromatographic analyses of chondroitin lyase AC or ABC hydrolysates revealed unexpected high content of material coeluting with the nonsulfated disaccharide 2-acetamido-2-deoxy-3-O-(β-d-gluco-4-enepyranosyl uronic acid)-d-galactose. Incubation of a commercial preparation of the 6-sulfated disaccharide, 2-acetamido-2-deoxy-3-O-(β-d-gluco-4-enepyranosyl uronic acid)-6-O-sulfo-d-galactose with “enriched Tris buffer” generated material coeluting with nonsulfated disaccharide. The amount of material exhibiting this anomalous chromatographic behavior was proportional to the amount of 6-sulfated disaccharide added to the incubation mixture. This suggested a precursor/product relationship between the 6-sulfated disaccharide and the anomalous peak. The result was specific for the 6-sulfated disaccharide: incubation of the 4-sulfated disaccharide, 2-acetamido-2-deoxy-3-O-(β-d-gluco-4-enepyranosyl uronic acid)-4-O-sulfo-d-galactose, with enriched Tris buffer did not generate material with anomalous chromatographic properties. When [35S]sulfate labeled cartilage glycosaminoglycans were hydrolyzed with chondroitin lyases, some of the radioactivity coeluted with the nonsulfated disaccharide. Thus, buffer-induced modification of 6-sulfated disaccharide was not caused by hydrolysis of ester sulfate. Although the proportion of the 6-sulfated disaccharide which was recovered in the anomalous peak was constant for incubations done simultaneously, incubations done at different times gave variable results. Thus, control incubations of 6-sulfated disaccharide with chondroitinase buffer must be included with each reaction series to allow correction for the proportion of the material eluting with nonsulfated disaccharide which is actually 6-sulfated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号