首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82872篇
  免费   5542篇
  国内免费   2868篇
  2023年   1196篇
  2022年   1121篇
  2021年   2528篇
  2020年   2542篇
  2019年   3440篇
  2018年   3060篇
  2017年   2192篇
  2016年   2192篇
  2015年   2794篇
  2014年   5111篇
  2013年   6388篇
  2012年   3911篇
  2011年   4997篇
  2010年   3835篇
  2009年   4220篇
  2008年   4323篇
  2007年   4424篇
  2006年   3979篇
  2005年   3453篇
  2004年   3079篇
  2003年   2513篇
  2002年   2286篇
  2001年   1519篇
  2000年   1243篇
  1999年   1273篇
  1998年   1212篇
  1997年   1007篇
  1996年   841篇
  1995年   872篇
  1994年   813篇
  1993年   664篇
  1992年   692篇
  1991年   603篇
  1990年   507篇
  1989年   473篇
  1988年   446篇
  1987年   407篇
  1986年   357篇
  1985年   506篇
  1984年   744篇
  1983年   511篇
  1982年   661篇
  1981年   517篇
  1980年   375篇
  1979年   331篇
  1978年   232篇
  1977年   225篇
  1976年   143篇
  1975年   120篇
  1973年   119篇
排序方式: 共有10000条查询结果,搜索用时 843 毫秒
991.
The radiosensitivity of spermatogonial stem cells of C3H/HeH × 101/H F1 hybrid mice was determined by counting undifferentiated spermatogonia at 10 days after X-irradiation. During the spermatogenic cycle, differences in radiosensitivity were found, which were correlated with the proliferative activity of the spermatogonial stem cells. In stage VIIIirr, during quiescence, the spermatogonial stem cells were most radiosensitive with a D0 of 1.4 Gy. In stages XIirr−Virr, when the cells were proliferatively active, the D0 was about 2.6 Gy. Based on the D0 values for sensitive and resistant spermatogonia and on the D0 for the total population, a ratio of 45:55% of sensitive to resistant spermatogonial stem cells was estimated for cell killing.

When the present data were compared with data on translocation induction obtained in mice of the same genotype, a close fit was obtained when the translocation yield (Y; in % abnormal cells) after a radiation dose D was described by Y = eτD, with τ = 1 for the sensitive and τ = 0.1 for the resistant spermatogonial stem cells, with a maximal eτD of 100.  相似文献   

992.
993.
A yeast strain carrying disruptions in TRK1 and ENA genes was very sensitive to Na+ because uptake discriminated poorly between K+ and Na+, and Na+ efflux was insignificant. Transformation with TRK1 and ENA1 restored discrimination, Na+ efflux and Na+ tolerance. Increasing external Ca2+ increased Na+ tolerance almost in the same proportion in TRK1 enal cells and in trkl ENAI cells, suggesting an unspecific effect of this cation. By using a vacuolar ATPase mutant, the role of the vacuole in Na+ tolerance was also demonstrated. The yeast model of Na+ exclusion and Na+ tolerance may be extended to plants.  相似文献   
994.
Routing of cytosolically synthesized precursor proteins into chloroplasts is a specific process which involves a multitude of soluble and membrane components. In this review we wil1 focus on early events of the translocation pathway of nuclear coded plastidic precursor proteins and compare import routes for polypeptide of the outer chloroplast envelope to that of internal chloroplast compartments. A number of proteins housed in the chloroplast envelopes have been implied to be involved in the translocation process, but so far a certain function has not been assigned to any of these proteins. The only exception could be an envelope localized hsc 70 homologue which could retain the import competence of a precursor protein in transit into the organelle.  相似文献   
995.
This experiment was designed to examine the effects of aluminium (Al) on the growth of Pinus radiata (D. Don) and Eucalyptus mannifera subsp. mannifera (Mudie) seedlings in culture solutions in a glasshouse to help explain the failure of radiata pine trees on some acid, low fertility soils in Australia on which the native eucalypts flourish. Aluminium (Al) in culture solution increased the growth of roots and shoots of seedlings of both species but while growth of the eucalypt continued to increase with increases in Al to 2.222 μM, growth of the pine was largest at 370 μM Al. In addition to total root length, specific root length (length per unit dry weight), a measure of fineness of the root, increased in the eucalypt seedlings as the substrate Al increased. Growth of the shoots and roots of the pine in the absence of any added Al was extremely poor suggesting that Al, in low concentrations, may be an essential element or ameliorate some other factors in solution culture at low pH. Root and shoot concentrations of K increased with increasing Al, whilst Ca and Mg Concentrations decreased and Mn concentrations were unaffected in both species. Tissue Ca and Mg concentrations were 2 to 3 times higher in the eucalypt seedlings than the pine at all levels of added Al due to greater uptake of these elements by the eucalypt. In contrast, at the highest concentration of Al in the medium, shoot Al concentrations were lower in the cucalypt than in the pine due to a greater proportion of Al being retained in the eucalypt roots. These differences between the seedlings in terms of root growth and tissue cation concentrations may help explain the ability of eucalypt species to maintain vigorous growth on acid soils high in Al and low in Ca and P, where growth of the pines failed.  相似文献   
996.
Indole-3-butyric acid (IBA) was recently identified by GC/MS analysis as an endogenous constituent of various plants. Plant tissues contained 9 ng g?1 fresh weight of free IBA and 37 ng g?1 fresh weight of total IBA, compared to 26 ng g?1 and 52 ng g?1 fresh weight of free and total indole-3-acetic acid (IAA), respectively. IBA level was found to increase during plant development, but never reached the level of IAA. It is generally assumed that the greater ability of IBA as compared with IAA to promote rooting is due to its relatively higher stability. Indeed, the concentrations of IAA and IBA in autoclaved medium were reduced by 40% and 20%, respectively, compared with filter sterilized controls. In liquid medium, IAA was more sensitive than IBA to non-biological degradation. However, in all plant tissues tested, both auxins were found to be metabolized rapidly and conjugated at the same rate with amino acids or sugar. Studies of auxin transport showed that IAA was transported faster than IBA. The velocities of some of the auxins tested were 7. 5 mm h?1 for IAA, 6. 7 mm h?1 for naphthaleneacetic acid (NAA) and only 3. 2 mm h?1 for IBA. Like IAA, IBA was transported predominantly in a basipetal direction (polar transport). After application of 3H-IBA to cuttings of various plants, most of the label remained in the bases of the cuttings. Easy-to-root cultivars were found to absorb more of the auxin and transport more of it to the leaves. It has been postulated that easy-to-root, as opposed to the difficult-to-root cultivars, have the ability to hydrolyze auxin conjugates at the appropriate time to release free auxin which may promote root initiation. This theory is supported by reports on increased levels of free auxin in the bases of cuttings prior to rooting. The auxin conjugate probably acts as a ‘slow-release’ hormone in the tissues. Easy-to-root cultivars were also able to convert IBA to IAA which accumulated in the cutting bases prior to rooting. IAA conjugates, but not IBA conjugates, were subject to oxidation, and thus deactivation. The efficiency of the two auxins in root induction therefore seems to depend on the stability of their conjugates. The higher rooting promotion of IBA was also ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. IAA was converted to IBA by seedlings of corn and Arabidopsis. The Km value for IBA formation was low (approximately 20 μM), indicating high affinity for the substrate. That means that small amounts of IAA (only a fraction of the total IAA in the plant tissues) can be converted to IBA. It was suggested that IBA is formed by the acetylation of IAA with acetyl-CoA in the carboxyl position via a biosynthetic pathway analogous to the primary steps of fatty acid biosynthesis, where acetyl moieties are transferred to an acceptor molecule. Incubation of the soluble enzyme fraction from Arabidopsis with 3H-IBA, IBA and UDP-glucose resulted in a product that was identified tentatively as IBA glucose (IBGIc). IBGIc was detected only during the first 30 min of incubation, showing that it might be converted rapidly to another conjugate.  相似文献   
997.
The development of somatic embryos is, in many plants, inhibited by 2,4-dichlorophenoxyacetic acid (2,4-D) and other auxins. The finding that difluoromethylornithine (DFMO) can counteract this inhibition has been used to test some of the hypotheses for the mechanism of inhibition.
Inhibition of somatic embryogenesis in carrot ( Daucus carota L.) by exogenous ethylene (from ethephon), antioxidants (ascorbic acid and glutathione), ethanol/acetaldehyde and abscisic acid was not counteracted by DFMO, indicating that the inhibitory effect of 2,4-D is not manifest through the formation of these compounds. Embryogenesis was abolished by micromolar concentrations of the polar auxin transport inhibitors 2, 3, 5-triiodobenzoic acid (TIBA), N-1-naphthylphthalamic acid (NPA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA). This inhibition was counteracted to a considerable extent by DFMO. Inhibition by relatively high concentrations of the antiauxin 2-( p -chlorophenoxy)-isobutyric acid (CPIB), which does not affect polar auxin transport, was in contrast not counteracted by DFMO. These findings indicate that exogenous auxins may inhibit embryogenesis by interfering with the ability of postglobular embryos to set up internal auxin gradients necessary for polarized growth.  相似文献   
998.
Active transport systems in bacteria can be divided into two groups: those that are osmotic shock-resistant with one single membrane protein, and those that are shock-sensitive and have a membrane-bound protein complex plus a soluble periplasmic protein. Whether the bacterial assimilatory nitrate transport falls into the one or the other of these two groups has not been studied before. We report that nitrate uptake by the strictly aerobic, N2-fixing heterotrophic bacterium Azotobacter chroococcum is sensitive to osmotic shock. The polypeptide composition of cytoplasmic membranes changes in response to the nitrogen source available to the cells. Incorporation of [35S]-methionine into proteins as well as use of the A. chroococcum TRI mutant, which is defective in nitrate transport, and the A. choococcum MCD1 strain, a mutant unable to use nitrate as a nitrogen source, suggest that nitrate transport into A. chroococcum cells is mediated by a multicomponent system tightly bound to the cytoplasmic membrane.  相似文献   
999.
On the inducibility of nitrate transport by tobacco cells   总被引:1,自引:0,他引:1  
The question as to whether the nitrate transport system is induced by nitrate was addressed using a cell suspension of the XD line of Nicotiana tabacum L. cv. Xanthi as an experimental system. The cells were grown on area as the sole nitrogen source, and tungstate was used to render nitrate reductase non-functional. To avoid shock due to vacuum filtration, the cells, were harvested by gravity filtration. Nitrate uptake by cells, which were harvested, transferred to fresh medium, and immediately exposed to nitrate (freshly harvested cells), displayed a lag period of about 3 h.
In cells which were given incubation periods in fresh medium before exposure to nitrate (preincubated cells), the lag period was considerably shortened. After 3 h of preincubation in the absence of nitrate (recovered cells), the lag period was almost completely eliminated. Cycloheximide inhibited nitrate uptake by recovered cells within minutes, and prevented the development of nitrate uptake in freshly harvested cells. Cycloheximide did not affect uptake of α-aminoisobutyric acid (AIB) within the first 2 h after its addition. Recovery of the membrane potential from a low value just after the harvest of the cells to a maximal value 3 h later, was observed using the lipophilic cation methyltriphenylphosphonium (MTPP+), supplied at low concentrations, as a probe. Depolarization of the membrane potential by MTPP+, at the millimolar range, caused a rapid inhibition of nitrate uptake by recovered cells. The results indicate that nitrate transport by the XD cells depends on the membrane potential and on protein components with short half life. In addition, it requires a continuous protein synthesis. The effects of physical manipulation on nitrate uptake are discussed.  相似文献   
1000.
Nitrogen assimilation and transport in carob plants   总被引:1,自引:0,他引:1  
Most of the nitrate reductase activity (80%;) in carob ( Ceratonia siliqua L. cv. Mulata) is localised in the roots. The nitrate concentration in the leaves is relatively low compared to that in the roots, suggesting that nitrate influx into the leaf may be a major factor limiting the levels of nitrate reductase in the shoot. Transport of nitrate from root to shoot appears limited by the entrance of nitrate into the xylem. In order to study this problem, we determined the nitrate concentrations and nitrate reductase activities along the roots of nitrate-grown plants, as well as the composition of the xylem sap and the nitrate levels in the leaves. Some of the the bypocotyl, in order to bypass the loading of nitrate into the xylem of the roots. The results show that the loading of nitrate into the xylem is a limiting step.
The cation and anion concentrations of nitrate- and ammonium-fed plants were similar, showing almost no production of organic anions. In both nitrate- and ammonium-fed plants, the transport of nitrogen from root to shoot was in the form of organic nitrogen compounds. The nitrate reductase activity in the roots was more than sufficient to explain all the efflux of OH into the root medium of nitrate-fed plants. In carob plants the K-shuttle may thus be operative to a limited extent only, corresponding to between 11 and 27%; of the nitrate taken up. Potassium seems to be the cation accompanying stored nitrate in the roots of carob seedlings, since they accumulate nearly stoichiometric amounts of K+ and NO3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号