首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1322篇
  免费   5篇
  国内免费   44篇
  2022年   10篇
  2021年   13篇
  2020年   10篇
  2019年   10篇
  2018年   7篇
  2017年   11篇
  2016年   8篇
  2015年   14篇
  2014年   20篇
  2013年   38篇
  2012年   15篇
  2011年   33篇
  2010年   32篇
  2009年   33篇
  2008年   37篇
  2007年   45篇
  2006年   74篇
  2005年   54篇
  2004年   64篇
  2003年   75篇
  2002年   56篇
  2001年   44篇
  2000年   44篇
  1999年   35篇
  1998年   41篇
  1997年   46篇
  1996年   42篇
  1995年   33篇
  1994年   32篇
  1993年   44篇
  1992年   33篇
  1991年   25篇
  1990年   27篇
  1989年   31篇
  1988年   29篇
  1987年   36篇
  1986年   15篇
  1985年   36篇
  1984年   24篇
  1983年   13篇
  1982年   16篇
  1981年   13篇
  1980年   8篇
  1979年   10篇
  1978年   4篇
  1977年   5篇
  1976年   10篇
  1975年   5篇
  1974年   5篇
  1972年   3篇
排序方式: 共有1371条查询结果,搜索用时 500 毫秒
131.
以可在黑龙江地区露地越冬的5个现代月季(Rosa chinensis)品种为实验材料,分别以其无菌苗的叶片和茎段为外植体,研究了愈伤组织诱导及植株再生方法。实验结果表明:5个寒地月季品种的叶片和茎段均可诱导出愈伤组织,2,4-D诱导愈伤组织的效果较好,高浓度的细胞分裂素不适合用于月季叶片和茎段愈伤组织的诱导;TDZ在月季愈伤组织分化培养过程中具有重要作用,光照培养可促进月季愈伤组织的分化,愈伤组织的分化能力随着继代次数的增加呈下降趋势。该实验成功地从2004-8和2004-9(2个月季品种)愈伤组织中诱导出再生植株,其愈伤组织的分化率分别为45%和38%。  相似文献   
132.
133.
134.
135.
Guar (Cyamopsis tetragonoloba L. Taub) is a drought tolerant and multipurpose grain legume cash crop grown primarily under rainfed conditions in several countries. The effect of various growth regulators and their combinations on a variety of explants, namely the embryo, cotyledons, cotyledonary nodes, shoot tip and hypocotyle, has been studied and an efficient system for callus induction and regeneration from callus has been developed. It was established that Murashige and Skoogs culture medium containing 2,4-dichlorophenoxyacetic acid (10.0M) in combination with 6-benzylaminopurine (5.0M) with embryo or cotyledon explants is most suitable for induction of green and friable morphogenic callus, with a range of 82.5–95% of cultured explants responding to callus induction. Efficient de novo shoot regeneration was achieved by culturing the callus obtained on this medium on Murashige and Skoogs medium containing 1-naphthlenacetic acid (13.0M) in combination with 6-benzylaminopurine (5.0M) with a range of 82.1–88.4% of callus clumps producing 20–25 shoots. In vitro rooting of cultured shoots was obtained on half-salt concentration of Murashige and Skoogs culture medium supplied with indole-3-butyric acid (5.0M) on which 82–90% of cultured shoots produced healthy roots. The in vitro regenerated plants were grown to pod setting and subsequent maturity under greenhouse conditions.  相似文献   
136.
Highly regenerative callus was isolated from the base of adventitious shoots on cotyledon explants of Dianthus hybrida Telstar Scarlet cultured on MS medium supplemented with 1 mg l−1 TDZ and 0.1 mg l−1 NAA. Flow cytometric analysis showed that cotyledon tissue is a mixture of diploid and tetraploid cells. Whereas the regenerative callus consisted of cells showing various ploidy levels of 2C to 16C, their regeneration ability was maintained as long as they were sub-cultured onto fresh media. More than 93% of regenerated shoots from the calluses were diploid. Only a few shoots were revealed as tetraploids and octoploids, suggesting that diploid cells had higher regeneration ability.  相似文献   
137.
A reliable and high-efficiency system of transforming embryogenic callus (EC) mediated by Agrobacterium tumefaciens was developed in cotton. Various aspects of transformation were examined in efforts to improve the efficiency of producing transformants. LBA4404 and C58C3, harboring the pgusBin19 plasmid containing neomycin phosphortransferase II (npt-II) gene as a selection marker, were used for transformation. The effects of Agrobacterium strains, acetosyringone (AS), co-cultivation temperature, co-cultivation duration, Agrobacterium concentration and physiological status of EC on transformation efficiency were evaluated. Strain LBA4404 proved significantly better than C58C3. Agrobacterium at a concentration of 0.5 × 108 cells ml–1 (OD600=0.5) improved the efficiency of transformation. Relatively low co-cultivation temperature (19 °C) and short co-cultivation duration (48 h) were optimal for developing a highly efficient method of transforming EC. Concentration of AS at 50 mg l–1 during co-cultivation significantly increased transformation efficiency. EC growing 15 days after subculture was the best physiological status for transformation. An overall scheme for producing transgenic cotton is presented, through which an average transformation rate of 15% was obtained.  相似文献   
138.
Shoot organogenesis and plant establishment has been achieved for Phellodendron amurense Rupr. from excised leaf explants. Young leaf explants were collected from in vitro established shoot cultures and used for the induction of direct shoot regeneration, callus and subsequent differentiation into shoots on MS medium. Direct shoot regeneration was achieved by culturing 1 cm2 sections of about 10-day-old leaves on MS medium enriched with 4.4 M BAP and 1.0 M NAA after 4 weeks of culture. The leaf explants produced callus from their cut margins within 3 weeks of incubation on medium supplemented with 2.0 M TDZ and 4.0 M 2,4-D or 4.0 M NAA. The maximum number of adventitious shoots was regenerated from the leaf-derived callus within 4 weeks of culture on MS medium containing 1.5 M BAP and 1.0 M NAA. The highest rate of shoot multiplication was achieved at the third subculture, and more than 65 shoots were produced per callus clump. For rooting, the in vitro proliferated and elongated shoots were excised into 2–4 cm long microcuttings, which were planted individually on a root-induction MS medium containing 2.0 M IBA. Within 3 weeks of transfer to the rooting medium, all the cultured microcuttings produced 2–6 roots. The in vitro regenerated plantlets were transferred to Kanuma soil, and the survival rate ex vitro was 90%.  相似文献   
139.
Summary An efficient system for the regeneration of plants from protoplasts was developed in Alstroemeria. Friable embryogenic callus (FEC) proved to be the best source for protoplast isolation and culture when compared with leaf tissue and compact embryogenic callus. Protoplast isolation was most efficient when FEC was cultured under vacuum for 5 min in an enzyme solution consisting of 4% cellulase, 0.5% Driselase and 0.2% Macerozyme, followed by culture for 12–16h in the dark at 24°C. Cell wall formation and colony formation were better in a liquid medium than on a semi-solid agarose medium. Micro-calluses were formed after 4 wk of culture. Ninety percent of the micro-calluses developed into FEC after 12wk of culture on proliferation medium. FEC cultures produced somatic embryos on a regeneration medium and half of these somatic embryos developed shoots. Protoplast-derived plants showed more somaclonal variation than vegetatively propagated control plants.  相似文献   
140.
Summary Camptothecin, produced by Camptotheca acuminata, is a pharmaceutically important compound. Transgenic technology has potential uses for the enhancement of camptothecin production; however, an efficient plant regeneration protocol for C. acuminata is not currently available. Factors that affected successful seedling germination were evaluated. The regeneration potential of various parts of seedlings was tested. Camptothecin production in regenerated plants was compared to its production in calluses and the original seedlings. Dark incubation and seed coat removal led to a higher germination rate and a higher survival rate after germination. The best shoot induction medium was found to be Gamborg's B5 medium+8.9 μM benzyladenine. Among the calluses induced from various parts of seedlings, leaf petiole calluses, leaf dise calluses, and cotyledon calluses regenerated shoots, but internode calluses did not. Furthermore, leaf petiole calluses and leaf dise calluses regenerated normal shoots, while cotyledon calluses regenerated hyperhydric shoots. Moreover, leaf petiole calluses had a higher shoot regeneration rate, 50% versus 9%, and a higher shoot number, 6.2±0.5 versus 2.0±0.3, than did leaf dise calluses on the best shoot induction medium. It took 4–6 wk to regenerate shoots after transfer into shoot induction media. Camptothecin concentration in the regenerated plants was significantly higher than that in the calluses and similar to that in the original seedlings. In conclusion, leaf petioles provide efficient plant regeneration of C. acuminata.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号