首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   2篇
  2022年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
11.
Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid present in fish oil, may exert cytotoxic and/or cytostatic effects on colon cancer cells when applied individually or in combination with some anticancer drugs. Here we demonstrate a selective ability of subtoxic doses of DHA to enhance antiproliferative and apoptotic effects of clinically useful cytokine TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in cancer but not normal human colon cells. DHA-mediated stimulation of TRAIL-induced apoptosis was associated with extensive engagement of mitochondrial pathway (Bax/Bak activation, drop of mitochondrial membrane potential, cytochrome c release), activation of endoplasmic reticulum stress response (CHOP upregulation, changes in PERK level), decrease of cellular inhibitor of apoptosis protein (XIAP, cIAP1) levels and significant changes in sphingolipid metabolism (intracellular levels of ceramides, hexosyl ceramides, sphingomyelines, sphingosines; HPLC/MS/MS). Interestingly, we found significant differences in representation of various classes of ceramides (especially C16:0, C24:1) between the cancer and normal colon cells treated with DHA and TRAIL, and suggested their potential role in the regulation of the cell response to the drug combination. These study outcomes highlight the potential of DHA for a new combination therapy with TRAIL for selective elimination of colon cancer cells via simultaneous targeting of multiple steps in apoptotic pathways.  相似文献   
12.
Tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2) and TRAF5 are adapter proteins involved in TNFα-induced activation of the c-Jun N-terminal kinase and nuclear factor κB (NF-κB) pathways. Currently, TNFα-induced NF-κB activation is believed to be impaired in TRAF2 and TRAF5 double knockout (T2/5 DKO) cells. Here, we report instead that T2/5 DKO cells exhibit high basal IκB kinase (IKK) activity and elevated expression of NF-κB-dependent genes in unstimulated conditions. Although TNFα-induced receptor-interacting protein 1 ubiquitination is indeed impaired in T2/5 DKO cells, TNFα stimulation further increases IKK activity in these cells, resulting in significantly elevated expression of NF-κB target genes to a level higher than that in wild-type cells. Inhibition of NIK in T2/5 DKO cells attenuates basal IKK activity and restores robust TNFα-induced IKK activation to a level comparable with that seen in wild-type cells. This suggests that TNFα can activate IKK in the absence of TRAF2 and TRAF5 expression and receptor-interacting protein 1 ubiquitination. In addition, both the basal and TNFα-induced expression of anti-apoptotic proteins are normal in T2/5 DKO cells, yet these DKO cells remain sensitive to TNFα-induced cell death, due to the impaired recruitment of anti-apoptotic proteins to the TNFR1 complex in the absence of TRAF2. Thus, our data demonstrate that TRAF2 negatively regulates basal IKK activity in resting cells and inhibits TNFα-induced cell death by recruiting anti-apoptotic proteins to the TNFR1 complex rather than by activating the NF-κB pathway.  相似文献   
13.
RIPK1 is involved in signaling from TNF and TLR family receptors. After receptor ligation, RIPK1 not only modulates activation of both canonical and NIK-dependent NF-κB, but also regulates caspase-8 activation and cell death. Although overexpression of RIPK1 can cause caspase-8-dependent cell death, when RIPK1(-/-) cells are exposed to TNF and low doses of cycloheximide, they die more readily than wild-type cells, indicating RIPK1 has pro-survival as well as pro-apoptotic activities. To determine how RIPK1 promotes cell survival, we compared wild-type and RIPK1(-/-) cells treated with TNF. Although TRAF2 levels remained constant in TNF-treated wild-type cells, TNF stimulation of RIPK1(-/-) cells caused TRAF2 and cIAP1 to be rapidly degraded by the proteasome, which led to an increase in NIK levels. This resulted in processing of p100 NF-κB2 to p52, a decrease in levels of cFLIP(L), and activation of caspase-8, culminating in cell death. Therefore, the pro-survival effect of RIPK1 is mediated by stabilization of TRAF2 and cIAP1.  相似文献   
14.
Death receptors (DRs) induce apoptosis but also stimulate proinflammatory "non-apoptotic" signaling (e.g. NF-κB and mitogen-activated protein kinase (MAPK) activation) and inhibit distinct steps of DR-activated maturation of procaspase-8. To examine whether isoforms of cellular FLIP (cFLIP) or its cleavage products differentially regulate DR signaling, we established HaCaT cells expressing cFLIP(S), cFLIP(L), or mutants of cFLIP(L) (cFLIP(D376N) and cFLIP(p43)). cFLIP variants blocked TRAIL- and CD95L-induced apoptosis, but the cleavage pattern of caspase-8 in the death inducing signaling complex was different: cFLIP(L) induced processing of caspase-8 to the p43/41 fragments irrespective of cFLIP cleavage. cFLIP(S) or cFLIP(p43) blocked procaspase-8 cleavage. Analyzing non-apoptotic signaling pathways, we found that TRAIL and CD95L activate JNK and p38 within 15 min. cFLIP variants and different caspase inhibitors blocked late death ligand-induced JNK or p38 MAPK activation suggesting that these responses are secondary to cell death. cFLIP isoforms/mutants also blocked death ligand-mediated gene induction of CXCL-8 (IL-8). Knockdown of caspase-8 fully suppressed apoptotic and non-apoptotic signaling. Knockdown of cFLIP isoforms in primary human keratinocytes enhanced CD95L- and TRAIL-induced NF-κB activation, and JNK and p38 activation, underscoring the regulatory role of cFLIP for these DR-mediated signals. Whereas the presence of caspase-8 is critical for apoptotic and non-apoptotic signaling, cFLIP isoforms are potent inhibitors of TRAIL- and CD95L-induced apoptosis, NF-κB activation, and the late JNK and p38 MAPK activation. cFLIP-mediated inhibition of CD95 and TRAIL DR could be of crucial importance during keratinocyte skin carcinogenesis and for the activation of innate and/or adaptive immune responses triggered by DR activation in the skin.  相似文献   
15.
目的:构建特异性抑制cFLIP基因表达的质粒并检测其对肝癌细胞的影响。方法:根据人cFLIP mRNA的序列,设计合成3对cFLIP基因的shRNA,将其连入干扰载体,转染HepG2,蛋白印迹法检测基因表达情况,以检测其对肝癌细胞的影响。结果:构建了特异性抑制肝癌细胞中cFLIP表达的质粒。结论:成功构建能特异且高效阻断cFLIP表达的shRNA表达质粒,为进一步研究cFLIP基因对肝癌增殖的影响及其临床应用奠定了基础。  相似文献   
16.
Overexpression of cFLIP protein seems to be critical in the antiapoptotic mechanism of immune escape of human COLO 205 colon adenocarcinoma cells. Actually, cFLIP appears to inhibit the death receptor ligand-mediated cell death. Application of the metabolic inhibitor sodium butyrate (NaBt), short-chain volatile fatty acid, sensitized COLO 205 cells to TNF-α-mediated apoptosis. Western-blot analysis revealed that the susceptibility of human COLO 205 cells to apoptogenic stimuli resulted from time-dependent reduction in cFLIP and simultaneous up-regulation of TNF-R1 protein levels. Additionally, the combined TNF-α and NaBt treatment caused cleavage of Bid and caspase-9 activation, as well as cytochrome c release from mitochondria. Thus, the evidence of this study indicates that NaBt facilitates the death receptor signal evoked by TNF-α. Moreover, NaBt alone initiated intrinsic apoptosis, that in turn was abolished by intracellular BCL-2 delivery. It confirms the involvement of mitochondria in the proapoptotic activity of NaBt. The activation of mitochondrial pathway was substantiated by up-regulated expression of BAK with concomitant reduction of antiapoptotic BCL-xL, XIAP and survivin proteins. These findings suggest that NaBt could represent a good candidate for the new therapeutic strategy aimed to improve chemo- and immunotherapy of colon cancer.  相似文献   
17.
目的探讨系统性红斑狼疮(system lupus erythematosus,SLE)患者外周血单个核细胞(peripheral blood monouuclear cells,PBMC)中细胞型Fas相关死亡域样白介素-1β转换酶抑制蛋白(cFLIP)表达的意义。方法应用半定量RT—PCR方法检测38例SLE患者和21名正常人PBMC中cFLIP—L mRNA和cFLIP—S mRNA的表达水平,并与SLE疾病活动指数(SLEDAI)评分进行相关性分析。结果①SLE患者PBMC中cFLIP—L mRNA和cFLIP—S mRNA表达水平均明显高于正常对照组(P〈0.01);SLE患者活动组cFLIP—L mRNA表达水平显著高于非活动组(P〈0.05),cFLIP—S mRNA表达水平在SLE患者活动组与非活动组之间没有显著性差异(P〉0.05)。②SLE患者cFLIP—L mRNA表达水平与SLEDAI评分呈正相关(r=0.423,P〈0.01);而eFLIP—S mRNA表达水平与SLEDAI评分无明显相关性(r=0.270,P〉0.05)。结论cFLIP—L mRNA和cFLIP—S mRNA可能在SLE发病机制中起重要作用。  相似文献   
18.
19.
Human COLO 205 colon adenocarcinoma cells are immune to extrinsic apoptosis induced by immunomodulatory cytokines. Among the antiapoptotic mechanisms responsible for the immune escape, the overexpression of the cFLIP protein seems to be critical. cFLIP appears to inhibit the TNF-α-induced death receptor signal. The application of the metabolic inhibitor bisindolylmaleimide IX (Bis-IX), known as a potent PKC repressor, sensitized COLO 205 cells to TNF-α-mediated apoptosis. The Western-blot analysis revealed that the susceptibility of human COLO 205 cells to apoptogenic stimuli resulted from time-dependent reduction in cFLIPL and TRADD protein levels. At the same time, the level of FADD protein was up-regulated. Additionally, the combined TNF-α and Bis-IX treatment caused cleavages of Bid and procaspase-9, as well as cytochrome c release. Thus, the evidence of this study indicates that Bis-IX facilitates the death receptor signal mediated by TNF-R1. Moreover, Bis-IX alone initiated intrinsic apoptosis, which could be abolished by Bcl-2 delivery. It heralds the involvement of mitochondria in caspase-8-independent intrinsic apoptosis. In turn, the treatment with bisindolylmaleimide III (Bis-III) did not assist TNF-α-dependent apoptosis.  相似文献   
20.
Sterile α motif and HD domain-containing protein 1 (SAMHD1) is a mammalian dNTP hydrolase (dNTPase) that regulates intracellular dNTP balance. We have previously reported that SAMHD1 mRNA and protein levels are significantly downregulated in CD4+ T-cells of patients with cutaneous T-cell lymphoma (CTCL), a disease characterized by infiltration of neoplastic CD4+ T-lymphocytes into the skin. However, functional significance of SAMHD1 in CTCL development and progression remains unknown. Here we investigate the mechanism by which SAMHD1 induces apoptosis in CTCL-derived CD4+ T-cells. We stably expressed exogenous SAMHD1 in the CTCL-derived HuT78 T-cell line containing a very low level of endogenous SAMHD1 protein. We found that low-level exogenous expression of SAMHD1 led to a significant reduction in HuT78 cell growth, proliferation, and colony formation. Exogenous SAMHD1 expression in HuT78 cells also resulted in increased spontaneous and Fas ligand (Fas-L)-induced apoptosis levels via activation of the extrinsic pathway, including caspase-8, ?3 and ?7. Additionally, increased SAMHD1 significantly reduced the protein and mRNA expression of the short isoform of cFLIP (cFLIPS), an important negative regulator of Fas-L-mediated apoptotic signaling. Our results indicate that exogenous SAMHD1 expression inhibits HuT78 cell growth and proliferation in part by increasing apoptosis. These findings implicate that SAMHD1 acts as an inhibitor in CTCL cell growth, suggesting that downregulation of SAMHD1 expression in neoplastic T-cells can facilitate uncontrolled cell proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号