首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1965篇
  免费   116篇
  国内免费   110篇
  2023年   27篇
  2022年   33篇
  2021年   53篇
  2020年   52篇
  2019年   65篇
  2018年   42篇
  2017年   46篇
  2016年   41篇
  2015年   62篇
  2014年   77篇
  2013年   92篇
  2012年   75篇
  2011年   82篇
  2010年   63篇
  2009年   77篇
  2008年   79篇
  2007年   85篇
  2006年   98篇
  2005年   87篇
  2004年   93篇
  2003年   76篇
  2002年   63篇
  2001年   30篇
  2000年   67篇
  1999年   48篇
  1998年   59篇
  1997年   45篇
  1996年   42篇
  1995年   40篇
  1994年   39篇
  1993年   38篇
  1992年   34篇
  1991年   20篇
  1990年   34篇
  1989年   24篇
  1988年   29篇
  1987年   22篇
  1986年   14篇
  1985年   31篇
  1984年   28篇
  1983年   10篇
  1982年   12篇
  1981年   10篇
  1980年   13篇
  1979年   6篇
  1978年   3篇
  1977年   6篇
  1976年   6篇
  1975年   6篇
  1974年   4篇
排序方式: 共有2191条查询结果,搜索用时 468 毫秒
41.
Levels of isopentenyladenosine and zeatin riboside were monitored in buds and needles of Scots pine ( Pinus sylvestris L.) seedlings grown under controlled climatic conditions and in field-grown trees. Extracts were purified by immunoaffinity chromatography and high-performance liquid chromatography. Cytokinin levels were quantified with an enzyme-linked immunosorbent assay. The cytokinin content was low in buds and needles of dormant seedlings but increased during dormancy release, reaching peak values in buds just before resumption of shoot growth. Samples collected in the field also showed a marked increase in the levels of cytokinins just prior to bud burst. Further, the biological activity of applied cytokinins in activating the dormant buds of Scots pine is shown. The results indicate a probable role of cytokinins in seedlings during dormancy release.  相似文献   
42.
The major source of substrates for microbial activity in the ectorhizosphere and on the rhizoplane are rhizodeposition products. They are composed of exudates, lysates, mucilage, secretions and dead cell material, as well as gases including respiratory CO2. Depending on plant species, age and environmental conditions, these can account for up to 40% (or more) of the dry matter produced by plants. The microbial populations colonizing the endorhizosphere, including mycorrhizae, pathogens and symbiotic N2-fixers have greater access to the total pool of carbon including that recently derived from photosynthesis. Utilization of rhizodeposition products induces at least a transient increase in soil biomass but a sustained increase depends on the state of the native soil biomass, the flow of other metabolites from the soil to the rhizosphere and the water relations of the soil. In addition, the phenomena of oligotrophy, cryptic growth, plasmolysis, dormancy and arrested metabolism can all influence the longevity of rhizosphere organisms. With this background, microbial growth in the rhizosphere will be discussed.  相似文献   
43.
We studied the effects of various polyamines on bud regeneration in thin-layer tissue explants of vegetative and floweringNicotiana tabacum L. cv. Wisconsin 38, in which application of exogenous spermidine (Spd) to vegetative cultures causes the initiation and development of some flower buds (Kaur-Sawhney et al. 1988 Planta173, 282). We now show that this effect is dependent on the time and duration of application, Spd being required from the start of the cultures for about three weeks. Neither putrescine nor spermine is effective in the concentration range tested. Spermidine cannot replace kinetin (N6-furfurylaminopurine) in cultures at the time of floral bud formation, but once the buds are initiated in the presence of kinetin, addition of Spd to the medium greatly increases the number of floral buds that develop into normal flowers. Addition of Spd to similar cultures derived from young, non-flowering plants did not cause the appearance of floral buds but rather induced a profusion of vegetative buds. These results indicate a morphogenetic role of Spd in bud differentiation. Dedicated to Professor Hans Mohr on the occasion of his 60th birthday  相似文献   
44.
Embryos of Avena sativa L. (cv. Moyencourt) show no high temperature dormancy. The dormancy is induced by the presence of endosperm-aleurone part of the seed. Germination of isolated embryos at 30°C can be prevented by ABA and the inhibition is reversed by GA. Inhibitors of GA synthesis also inhibit embryo germination. The embryos of dormant and non-dormant seeds vary greatly in their sensitivity to exogenous ABA. High temperature dormancy of the entire seeds can be relieved by low concentrations of ethanol. On the basis of these facts a hypothetic model is proposed showing how interaction between endogenous GA and ABA-like inhibitory substance, may regulate the high temperature dormancy of the seeds.  相似文献   
45.
在合肥地区从豇豆带毒实生苗中分离到一株病毒分离物Cp—2.侵染豇豆表现为卷叶、花叶,并使叶片革质化.易经汁液摩擦接种.可经桃蚜、棉蚜、蚕豆好及豆蚜以非持久性方式传播.其寄主范围广泛,能侵染测试的7科20种植物中的11种。稀释限点为10~(-3)~10~(-4),钝化温度为60~65℃,体外存活期7~8天。纯化病毒悬液A260/280为1.523.病毒粒体为杆状,宽约18~20nm,多种长度,优势长度分别为58,98,150nm。在琼脂双扩散试验中不与烟草脆裂病毒(TRV)、豌豆早枯病毒(PEBV)苜蓿花叶病毒(ALMV)、烟草花叶病毒(TMV)的抗血清发生反应。病毒外壳蛋白为单一电泳组分.其分子量为34 800,氨基酸组成中缺精所酸和脯氨酸。根据上述特征,认为Cp—2分离物为一种不隶属于目前确认病毒组群的单一病毒,且在国内外尚未见类似的报道,故暂定名为豇豆蚜传碎裂病毒(Cowpea aphid-borne breakage virus,CABV)。  相似文献   
46.
Hydrilla verticillata (L. f.) Royle tubers from monoecious plants andPotamogeton gramineus L. winter buds were sprouted and allowed to grow in the dark for 120 days. We measured plant length and counted the number of leaves at 2–3 day intervals.Hydrilla grew most rapidly during the first 16–17 days andPotamogeton grew most rapidly during the first 16–25 days. Measurement of propagule carbon content over time indicated that cessation of rapid growth coincided with depletion of tuber carbon by one-half forHydrilla. ForPotamogeton, growth was reduced after 16 to 25 days while the winter bud C half-life was 37 days. Calculations indicated thatHydrilla mobilized 49% andPotamogeton 39% of the initial propagule carbon to support growth. In a second experiment, in which plants were grown in substrate the plants grew taller and produced slightly more leaves per plant.Potamogeton removed from darkness after specified time periods, and allowed to grow for 21 days in a greenhouse recovered from 20–30 days in the dark. Similarly treatedHydrilla plants recovered from up to 80 days in the dark.Potamogeton had mobilized 79% of initial C by the time it was unable to recover from the dark treatment. Combined results for both species indicate that the majority of propagule C was utilized in the first 16 to 30 days following sprouting. In conjunction with an understanding propagule sprouting requirements, this information will be useful in the timing of application for management techniques. The U.S. Government right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged. The U.S. Government right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   
47.
48.
The life-history ofNeurospora in nature has remained largely unknown. The present study attempts to remedy this. The following conclusions are based on observation ofNeurospora on fire-scorched sugar cane in agricultural fields, and reconstruction experiments using a colour mutant to inoculate sugar cane burned in the laboratory. The fungus persists in soil as heat- resistant dormant ascospores. These are activated by a chemical(s) released into soil from the burnt substrate. The chief diffusible activator of ascospores is furfural and the germinating ascospores infect the scorched substrate. An invasive mycelium grows progressively upwards inside the juicy sugar cane and produces copious macroconidia externally through fire- induced openings formed in the plant tissue, or by the mechanical rupturing of the plant epidermal tissue by the mass of mycelium. The loose conidia are dispersed by wind and/or foraged by microfauna. It is suggested that the constant production of macroconidia, and their ready dispersal, serve a physiological role: to drain the substrate of minerals and soluble sugars, thereby creating nutritional conditions which stimulate sexual reproduction by the fungus. Sexual reproduction in the sugar- depleted cellulosic substrate occurs after macroconidiation has ceased totally and is favoured by the humid conditions prevailing during the monsoon rains. Profuse micro-conidiophores and protoperithecia are produced simultaneously in the pockets below the loosened epidermal tissue. Presumably protoperithecia are fertilized by microconidia which are possibly transmitted by nematodes active in the dead plant tissue. Mature perithecia release ascospores in situ which are passively liberated in the soil by the disintegration of the plant material and are, apparently, distributed by rain or irrigation water.  相似文献   
49.
Evidence that cytokinin controls bud size and branch form in Norway spruce   总被引:3,自引:0,他引:3  
Shoot elongation in many coniferous species is predetermined during bud formation the year before the shoot extends. This implies that formation of the primordial shoot within the bud is the primary event in annual shoot growth. Hormonal factors regulating bud formation are consequently of utmost importance. We followed the levels of the endogenous cytokinins zeatin riboside (ZR) and isopentenyladenosine (iPA) in terminal buds, whorl buds and lower lateral buds of the uppermost current-year whorl shoots of 15- to 20-year-old trees of Norway spruce [ Picea abies (L.) Karst.] from June to September. Cytokinins were isolated with affinity chromatography columns, purified by high performance liquid chromatography, and quantified by ELISA. The level of ZR was low in June but increased gradually in all buds until September. Throughout the measurement period, the ZR level was highest in terminal buds and lowest in the scattered lateral, buds, with the whorl buds intermediate. The level of iPA peaked in July and decreased later without any consistent differences among the three classes of buds. The development of different kinds of buds was followed by scanning electron microscopy. We found that bud growth was greatest during August and September. The final size of primordial shoots within the buds varied considerably and the weight of the terminal bud was three times that of the whorl buds and more than five times that of the other lateral buds.
We conclude that the increase in ZR level during the period of active bud development is indicative of the importance of cytokinin for this process. Furthermore, the positive correlation between the level of ZR and bud growth during the period of predetermination of next year's branch growth suggests that this hormone indirectly controls the form of single branches in the spruce tree.  相似文献   
50.
Phytochrome control of short-day-induced bud set in black cottonwood   总被引:6,自引:0,他引:6  
In trees and other woody perennial plants, short days (SDs) typically induce growth cessation, the initiation of cold acclimation, the formation of a terminal bud and bud dormancy. Phytochrome control of SD-induced bud set was investigated in two northern clones of black cottonwood (Populus trichocarpa Torr. & Gray) by using night breaks with red light (R) and far-red light (FR). For both clones (BC-1 and BC-2), SD-induced bud set was prevented when R night breaks as short as 2 min were given in the middle of the night. When night breaks with 2 min of R were immediately followed by 2 min of FR, substantial reversibility of bud set was observed for BC-1 but not for BC-2. By comparing the effects of the R night breaks on bud set and the length of specific internodes, we determined that the R night breaks influenced internode elongation in two opposing ways. First, the addition of a R night break to the SD treatment prevented the cessation of internode elongation that is associated with bud set. Those internodes that would not have elongated under SDs (and would have been found within the terminal bud) elongated in the R treatment. Second, the R night breaks decreased internode length relative to the long-day (LD) control. In contrast to the clonal differences in reversibility that we observed for bud set, the decrease in internode length (i.e. the second effect of R) was R/FR reversible in both clones. Based on these results, we conclude that internode elongation is influenced by two distinct types of phytochrome-mediated response. The first response is a typical response to photpperiod, whereas the second response is a typical “end-of-day” response to light quality. Our results demonstrate that SD-induced bud set in black cottonwood is controlled by phytochrome but that clonal differences have an important influence on the R/FR reversibility of this response. The availability of an experimental system in which SD-induced bud set is R/FR reversible will be valuable for studying the physiological genetics of photoperiodism in trees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号