首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   8篇
  国内免费   7篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   7篇
  2013年   29篇
  2012年   11篇
  2011年   12篇
  2010年   4篇
  2009年   7篇
  2008年   3篇
  2006年   4篇
  2005年   6篇
  2004年   6篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有153条查询结果,搜索用时 0 毫秒
71.
Brassinosteroid (BR) signalling is known to be coordinated with light signalling in above ground tissue. Many studies focusing on the shade avoidance response in above ground tissue or hypocotyl elongation in darkness have revealed the contribution of the BR signalling pathway to these processes. We previously analysed the expression of DWARF 4 (DWF4), a key BR biosynthesis enzyme, and revealed that light perception in above ground tissues triggered DWF4 accumulation in root tips. To determine the required wavelength of light and photoreceptors responsible for this regulation, we studied DWF4‐GUS marker plants grown in several monochromatic light conditions. We revealed that monochromatic blue LED light could induce DWF4 accumulation in primary root tips and root growth as much as white light, whereas monochromatic red LED could not. Consistent with this, a cryptochrome1/2 double mutant showed retarded root growth under white light whereas a phytochromeA/B double mutant did not. Taken together, our data strongly indicated that blue light signalling was important for DWF4 accumulation in root tips and root growth. Furthermore, DWF4 accumulation patterns in primary root tips were not altered by auxin or sugar treatment. Therefore, we hypothesize that blue light signalling from the shoot tissue is different from auxin and sugar signalling.  相似文献   
72.
Effects of 28-homobrassinolide (HBR) and kinetin (KIN) on photosynthesis, nitrogen metabolism, and the seed yield were studied. The leaves of 25-d-old plants of Vigna radiata (L.) Wilczek were sprayed with 0.01, 1.0 or 100 M aqueous solution of KIN, or 0.0001, 0.01 or 1.0 M that of HBR. KIN and especially HBR increased the activities of nitrate reductase and carbonic anhydrase, chlorophyll and total protein contents and net photosynthetic rate in the leaves, and pod number and seed yield, at harvest.  相似文献   
73.
Brassinosteroids (BRs) are plant hormones that are essential for a wide range of developmental processes in plants. Many of the genes responsible for the early reactions in the biosynthesis of BRs have recently been identified. However, several genes for enzymes that catalyze late steps in the biosynthesis pathways of BRs remain to be identified, and only a few genes responsible for the reactions that produce bioactive BRs have been identified. We found that the ROTUNDIFOLIA3 (ROT3) gene, encoding the enzyme CYP90C1, which was specifically involved in the regulation of leaf length in Arabidopsis thaliana, was required for the late steps in the BR biosynthesis pathway. ROT3 appears to be required for the conversion of typhasterol to castasterone, an activation step in the BR pathway. We also analyzed the gene most closely related to ROT3, CYP90D1, and found that double mutants for ROT3 and CYP90D1 had a severe dwarf phenotype, whereas cyp90d1 single knockout mutants did not. BR profiling in these mutants revealed that CYP90D1 was also involved in BR biosynthesis pathways. ROT3 and CYP90D1 were expressed differentially in leaves of A. thaliana, and the mutants for these two genes differed in their defects in elongation of hypocotyls under light conditions. The expression of CYP90D1 was strongly induced in leaf petioles in the dark. The results of the present study provide evidence that the two cytochrome P450s, CYP90C1 and CYP90D1, play distinct roles in organ-specific environmental regulation of the biosynthesis of BRs.  相似文献   
74.
75.
76.
77.
Fusicoccin, an inhibitor of brassinosteroid-induced ethylene production   总被引:2,自引:0,他引:2  
Fusicoccin was evaluated for its effects on brassinosteroid (BR), indole-3-acetic acid (IAA) and BR + IAA-induced ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) and ACC-synthase production by etiolated mung bean ( Vigna radiata L. Rwilez cv. Berken) hypocotyl segments. Fusicoccin inhibition of ethylene and ACC production induced by 2 μ M BR started at concentrations as low as 0.05 μ M . Maximum inhibition occurred at a 1 μ M concentration with no further inhibition at higher concentrations tested. Fusicoccin (1 μ M ) was effective in the inhibition of BR-induced ethylene, ACC and ACC-synthase production at low and high concentrations of BR.
Fusicoccin at concentrations as high as 2 μ M had no effect on ethylene and ACC production promoted by low concentrations of IAA (1 to 10 μ M ). When higher concentrations (100–1000 μ M ) of IAA were used, fusicoccin (1 μ M ) had an inhibitory effect on ethylene and ACC production. Interestingly, fusicoccin (1 μ M ) had little or no effect on ACC-synthase promoted by high concentrations of IAA (1000 μ M ).
When BR and IAA were used in combination, fusicoccin inhibited ethylene and ACC production at concentrations as low as 0.05 μ M with maximum inhibition occurring at 0.5 μ M . At a 1 μ M concentration, fusicoccin was effective in inhibiting the synergistic stimulation of ACC-synthase promoted by BR and IAA.  相似文献   
78.
79.
《Current biology : CB》2020,30(9):1579-1588.e6
  1. Download : Download high-res image (131KB)
  2. Download : Download full-size image
  相似文献   
80.
Phytochrome-hormonal signalling networks   总被引:12,自引:0,他引:12  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号