首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7024篇
  免费   526篇
  国内免费   186篇
  2024年   8篇
  2023年   156篇
  2022年   129篇
  2021年   245篇
  2020年   205篇
  2019年   320篇
  2018年   237篇
  2017年   190篇
  2016年   203篇
  2015年   217篇
  2014年   329篇
  2013年   392篇
  2012年   265篇
  2011年   249篇
  2010年   239篇
  2009年   230篇
  2008年   267篇
  2007年   259篇
  2006年   229篇
  2005年   197篇
  2004年   220篇
  2003年   175篇
  2002年   211篇
  2001年   172篇
  2000年   120篇
  1999年   115篇
  1998年   141篇
  1997年   124篇
  1996年   110篇
  1995年   116篇
  1994年   141篇
  1993年   97篇
  1992年   150篇
  1991年   120篇
  1990年   119篇
  1989年   114篇
  1988年   132篇
  1987年   111篇
  1986年   92篇
  1985年   102篇
  1984年   121篇
  1983年   84篇
  1982年   89篇
  1981年   74篇
  1980年   48篇
  1979年   27篇
  1978年   6篇
  1977年   9篇
  1976年   10篇
  1972年   7篇
排序方式: 共有7736条查询结果,搜索用时 797 毫秒
961.
Inflammatory lipid mediators derived from arachidonic acid (AA) and docosahexaenoic acid (DHA) modify the pathophysiology of brain ischemia. The goal of this work was to investigate the formation of eicosanoids and docosanoids generated from AA and DHA, respectively, during no-flow cerebral ischemia. Rats were subjected to head-focused microwave irradiation 5 min following decapitation (complete ischemia) or prior to decapitation (controls). Brain lipids were extracted and analyzed by reverse-phase liquid chromatography-tandem mass spectrometry. After complete ischemia, brain AA, DHA, and docosapentaenoic acid concentrations increased 18-, 5- and 4-fold compared with controls, respectively. Prostaglandin E(2) (PGE(2)) and PGD(2) could not be detected in control microwaved rat brain, suggesting little endogenous PGE(2)/D(2) production in the brain in the absence of experimental manipulation. Concentrations of thromboxane B(2), E(2)/D(2)-isoprostanes, 5-hydroxyeicosatetraenoic acid (5-HETE), 5-oxo-eicosatetraenoic acid, and 12-HETE were significantly elevated in ischemic brains. In addition, DHA products such as mono-, di- and trihydroxy-DHA were detected in control and ischemic brains. Monohydroxy-DHA, identified as 17-hydroxy-DHA and thought to be the immediate precursor of neuroprotectin D(1), was 6.5-fold higher in ischemic than in control brain. The present study demonstrated increased formation of eicosanoids, E(2)/D(2)-IsoPs, and docosanoids following cerebral ischemia. A balance of these lipid mediators may mediate immediate events of ischemic injury and recovery.  相似文献   
962.
Dopamine (DA) receptor and NMDA receptor (NMDAR) activation in the lateral (LA) nucleus of the amygdala plays a critical role in emotional processing. Several distinct mechanisms regulate the molecular cross-talk between DA receptors and NMDARs in different brain regions; however, the cellular mechanism through which DA modulates NMDARs in LA projection neurons has not been studied. Here, we investigated the effect of DA receptor activation on NMDAR currents in LA projection neurons recorded in amygdala slices obtained from young rats. We found that DA reduces NMDAR current amplitudes in an additive manner through the activation of both D1-like and D2-like receptors. The reduction of NMDAR current amplitudes by D1-like receptor activation is mediated by a protein-protein interaction between the D1R and the NMDAR, while the regulation of NMDAR activity by D2-like receptors is elicited through a G protein-dependent pathway controlled by D4R. The results of our investigation show for the first time a functional interplay between D1R and D4R that mediates coincident G protein-independent and dependent regulation of NMDARs.  相似文献   
963.
964.
Because of the relative impermeability of the blood‐brain barrier (BBB), many drugs are unable to reach the CNS in therapeutically relevant concentration. One method to deliver drugs to the CNS is the osmotic opening of the BBB using mannitol. Hyperosmotic mannitol induces a strong phosphorylation on tyrosine residues in a broad spectrum of proteins in cerebral endothelial cells, the principal components of the BBB. Previously, we have shown that among targets of tyrosine phosphorylation are β‐catenin, extracellular signal‐regulated kinase 1/2 and the non‐receptor tyrosine kinase Src. The aim of this study was to identify new signalling pathways activated by hypertonicity in cerebral endothelial cells. Using an antibody array and immunoprecipitation we identified the receptor tyrosine kinase Axl to become tyrosine phosphorylated in response to hyperosmotic mannitol. Besides activation, Axl was also cleaved in response to osmotic stress. Degradation of Axl proved to be metalloproteinase‐ and proteasome‐dependent and resulted in 50–55 kDa C‐terminal products which remained phosphorylated even after degradation. Specific knockdown of Axl increased the rate of apoptosis in hyperosmotic mannitol‐treated cells; therefore, we assume that activation of Axl may be a protective mechanism against hypertonicity‐induced apoptosis. Our results identify Axl as an important element of osmotic stress‐induced signalling.  相似文献   
965.
Histamine has neurotransmitter/neuromodulator functions in the adult brain, but its role during CNS development has been elusive. We studied histamine effects on proliferation, cell death and differentiation of neuroepithelial stem cells from rat cerebral cortex in vitro . RT-PCR and Western blot experiments showed that proliferating and differentiated cells express histamine H1, H2 and H3 receptors. Treatments with histamine concentrations (100 nM–1 mM) caused significant increases in cell numbers without affecting Nestin expression. Cell proliferation was evaluated by BrdU incorporation; histamine caused a significant increase dependent on H2 receptor activation. Apoptotic cell death during proliferation was significantly decreased at all histamine concentrations, and cell death was promoted in a concentration-dependent manner by histamine in differentiated cells. Immunocytochemistry studies showed that histamine increased 3-fold the number of neurons after differentiation, mainly by activation of H1 receptor, and also significantly decreased the glial (astrocytic) cell proportion, when compared to control conditions. In summary, histamine increases cell number during proliferative conditions, and has a neuronal-differentiating action on neural stem cells, suggesting that the elevated histamine concentration reported during development might play a role in cerebrocortical neurogenesis, by activation of H2 receptors to promote proliferation of neural precursors, and favoring neuronal fate by H1-mediated stimulation.  相似文献   
966.
967.
GM2/GD2 synthase gene knockout mice lack all complex gangliosides, which are abundantly expressed in the nervous systems of vertebrates. In turn, they have increased precursor structures GM3 and GD3, probably replacing the roles of the depleted complex gangliosides. In this study, we found that 9-O-acetyl GD3 is also highly expressed as one of the major glycosphingolipids accumulating in the nervous tissues of the mutant mice. The identity of the novel component was confirmed by neuraminidase treatment, thin layer chromatography-immunostaining, two-dimensional thin layer chromatography with base treatment, and mass spectrometry. All candidate factors reported to be possible inducer of 9-O- acetylation, such as bitamine D binding protein, acetyl CoA transporter, or O-acetyl ganglioside synthase were not up-regulated. Tis21 which had been reported to be a 9-O-acetylation inducer was partially down-regulated in the null mutants, suggesting that Tis21 is not involved in the induction of 9-O-acetyl-GD3 and that accumulated high amount of GD3 might be the main factor for the dramatic increase of 9-O-acetyl GD3. The ability to acetylate exogenously added GD3 in the normal mouse astrocytes was examined, showing that the wild-type brain might be able to synthesize very low levels of 9-O-acetyl GD3. Increased 9-O-acetyl GD3, in addition to GM3 and GD3, may play an important role in the compensation for deleted complex gangliosides in the mutant mice.  相似文献   
968.
Drugs to treat African trypanosomiasis are toxic, expensive and subject to parasite resistance. New drugs are urgently being sought. Although the existing drug, eflornithine, is assumed to reach the brain in high concentrations, little is known about how it crosses the healthy and infected blood-brain barrier. This information is essential for the design of drug combinations and new drugs. This study used novel combinations of animal models to address these omissions. Eflornithine crossed the healthy blood-CNS interfaces poorly, but this could be improved by co-administering suramin, but not nifurtimox, pentamidine or melarsoprol. Work using a murine model of sleeping sickness demonstrated that Trypanosoma brucei brucei crossed the blood-CNS interfaces, which remained functional, early in the course of infection. Concentrations of brain parasites increased during the infection and this resulted in detectable blood-brain barrier, but not choroid plexus, dysfunction at day 28 post-infection with resultant increases in eflornithine brain delivery. Barrier integrity was never restored and the animals died at day 37.9 +/- 1.2. This study indicates why an intensive treatment regimen of eflornithine is required (poor blood-brain barrier penetration) and suggests a possible remedy (combining eflornithine with suramin). The blood-brain barrier retains functionality until a late, possibly terminal stage, of trypanosoma infection.  相似文献   
969.
AMP-activated protein kinase (AMPK) is activated when the catalytic α subunit is phosphorylated on Thr172 and therefore, phosphorylation of the α subunit is used as a measure of activation. However, measurement of α subunit of AMPK (α-AMPK) phosphorylation in vivo can be technically challenging. To determine the most accurate method for measuring α-AMPK phosphorylation in the mouse brain, we compared different methods of killing and tissue preparation. We found that freeze/thawing samples after homogenization on ice dramatically increased α-AMPK phosphorylation in mice killed by cervical dislocation. Killing of mice by focused microwave irradiation, which rapidly heats the brain and causes enzymatic inactivation, prevented the freeze/thaw-induced increase in α-AMPK phosphorylation and similar levels of phosphorylation were observed compared with mice killed with cervical dislocation without freeze/thawing of samples. Sonication of samples in hot 1% sodium dodecyl sulfate blocked the freeze/thaw-induced increase in α-AMPK phosphorylation, but phosphorylation was higher in mice killed by cervical dislocation compared with mice killed by focused microwave irradiation. These results demonstrate that α-AMPK phosphorylation is dependent on method of killing and tissue preparation and that α-AMPK phosphorylation can increase in a manner that does not reflect biological alterations.  相似文献   
970.
We have previously shown that the uptake and transcytosis of albumin in astrocytes promote the synthesis of the neurotrophic factor oleic acid. Although the mechanism by which albumin induces oleic acid synthesis is well known, the mechanism of albumin uptake in astrocytes remains unknown. In this work, we found that astrocytes express megalin, an endocytic receptor for multiple ligands including albumin. In addition, when the activity of megalin is blocked by specific antibodies or by silencing megalin with specific siRNA, albumin binding and internalization is strongly reduced indicating that megalin is required for albumin binding and internalization in the astrocyte. Since the uptake of albumin in astrocytes aims at synthesizing the neurotrophic factor oleic acid, we tested the ability of megalin-silenced astrocytes to synthesize and release oleic acid in the presence of albumin. Our results showed that the amount of oleic acid found in the extracellular medium of megalin-silenced astrocytes was strongly reduced as compared with their controls. Together, the results of this work indicate that megalin is a receptor for albumin in astrocytes and is required for the synthesis of the neurotrophic factor oleic acid. Consequently, the possible involvement of albumin in the holoprosencephalic syndrome observed in megalin-deficient mice is suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号