首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1926篇
  免费   113篇
  国内免费   87篇
  2023年   30篇
  2022年   41篇
  2021年   41篇
  2020年   38篇
  2019年   37篇
  2018年   46篇
  2017年   44篇
  2016年   60篇
  2015年   39篇
  2014年   92篇
  2013年   138篇
  2012年   73篇
  2011年   92篇
  2010年   73篇
  2009年   106篇
  2008年   99篇
  2007年   94篇
  2006年   96篇
  2005年   70篇
  2004年   67篇
  2003年   73篇
  2002年   66篇
  2001年   47篇
  2000年   42篇
  1999年   39篇
  1998年   31篇
  1997年   29篇
  1996年   27篇
  1995年   36篇
  1994年   41篇
  1993年   28篇
  1992年   25篇
  1991年   15篇
  1990年   16篇
  1989年   22篇
  1988年   17篇
  1987年   23篇
  1986年   23篇
  1985年   18篇
  1984年   31篇
  1983年   16篇
  1982年   26篇
  1981年   14篇
  1980年   19篇
  1979年   15篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1972年   2篇
排序方式: 共有2126条查询结果,搜索用时 15 毫秒
101.
The effects of TEMPO-mediated oxidation, performed with NaClO, a catalytic amount of NaBr, and 2,2′,6,6′-tetramethylpiperidine-1-oxy radical (TEMPO), were studied on lyocell fibers by means of GPC using multiple detection and group-selective fluorescence labeling according to the CCOA and FDAM methodology. The applied method determines functional group content as a sum parameter, as well as functional group profiles in relation to the molecular weight of the cellulose fibers. Both the CHO and COOH profiles, as well as molecular weight alterations, were analyzed. A significant decrease in the average molecular weight was obtained during the first hour of TEMPO-mediated oxidation, but prolonged oxidation time resulted in no strong additional chain scission. Significant amounts of COOH groups were introduced in the high molecular weight fractions by the oxidation with higher concentrations of NaClO (2.42–9.67 mmol NaClO/g fiber) after modification times of 1 h or longer.  相似文献   
102.
103.
A protocol for the efficient isotopic labeling of large G protein‐coupled receptors with tryptophan in Escherichia coli as expression host was developed that sufficiently suppressed the naturally occurring L‐tryptophan indole lyase, which cleaves tryptophan into indole, pyruvate, and ammonia resulting in scrambling of the isotopic label in the protein. Indole produced by the tryptophanase is naturally used as messenger for cell–cell communication. Detailed analysis of different process conducts led to the optimal expression strategy, which mimicked cell–cell communication by the addition of indole during expression. Discrete concentrations of indole and 15N2‐L‐tryptophan at dedicated time points in the fermentation drastically increased the isotopic labeling efficiency. Isotope scrambling was only observed in glutamine, asparagine, and arginine side chains but not in the backbone. This strategy allows producing specifically tryptophan labeled membrane proteins at high concentrations avoiding the disadvantages of the often low yields of auxotrophic E. coli strains. In the fermentation process carried out according to this protocol, we produced ~15 mg of tryptophan labeled neuropeptide Y receptor type 2 per liter medium. Biotechnol. Bioeng. 2013; 110: 1681–1690. © 2013 Wiley Periodicals, Inc.  相似文献   
104.
A wide variety of sulfur metabolites play important roles in plant functions. We have developed a precise and sensitive method for the simultaneous measurement of several sulfur metabolites based on liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) and 34S metabolic labeling of sulfur-containing metabolites in Arabidopsis thaliana seedlings. However, some sulfur metabolites were unstable during the extraction procedure. Our proposed method does not allow for the detection of the important sulfur metabolite homocysteine because of its instability during sample extraction. Stable isotope-labeled sulfur metabolites of A. thaliana shoot were extracted and utilized as internal standards for quantification of sulfur metabolites with LC–MS/MS using S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), methionine (Met), glutathione (GSH), and glutathione disulfide (GSSG) as example metabolites. These metabolites were detected using electrospray ionization in positive mode. Standard curves were linear (r2 > 0.99) over a range of concentrations (SAM 0.01–2.0 μM, SAH 0.002–0.10 μM, Met 0.05–4.0 μM, GSH 0.17–20.0 μM, GSSG 0.07–20.0 μM), with limits of detection for SAM, SAH, Met, GSH, and GSSG of 0.83, 0.67, 10, 0.56, and 1.1 nM, respectively; and the within-run and between-run coefficients of variation based on quality control samples were less than 8%.  相似文献   
105.
Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotin to the accepting substrate, pyruvate. It has been hypothesized that the reactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT domain active site. Whereas bidentate ligands are commonly observed in enzymes catalyzing reactions proceeding through an enolpyruvate intermediate, no bidentate interaction has yet been observed in the CT domain of PC. Here, we report three X-ray crystal structures of the Rhizobium etli PC CT domain with the bound inhibitors oxalate, 3-hydroxypyruvate, and 3-bromopyruvate. Oxalate, a stereoelectronic mimic of the enolpyruvate intermediate, does not interact directly with the metal ion. Instead, oxalate is buried in a pocket formed by several positively charged amino acid residues and the metal ion. Furthermore, both 3-hydroxypyruvate and 3-bromopyruvate, analogs of the reaction product oxaloacetate, bind in an identical manner to oxalate suggesting that the substrate maintains its orientation in the active site throughout catalysis. Together, these structures indicate that the substrates, products and intermediates in the PC-catalyzed reaction are not oriented in the active site as previously assumed. The absence of a bidentate interaction with the active site metal appears to be a unique mechanistic feature among the small group of biotin-dependent enzymes that act on α-keto acid substrates.  相似文献   
106.
A specific illumination approach has been developed for identification of adenosine triphosphate (ATP)-binding proteins. This strategy utilizes a tandem photoactivatable unit that consists of a diazirine group as a carbene precursor and an o-hydroxycinnamate moiety as a coumarin precursor. The photolysis of diazirine induces a specific cross-link on target proteins and is followed by photoactivation of coumarin generation with a concomitant release of the pre-installed affinity ligand. The ATP, installed with this cross-linker at the γ-position, successfully transferred a coumarin onto ATP-binding proteins using only UV-irradiation.  相似文献   
107.
Protein trans-splicing by split inteins holds great potential for the chemical modification and semisynthesis of proteins. However, the structural requirements of the extein sequences immediately flanking the intein are only poorly understood. This knowledge is of particular importance for protein labeling, when synthetic moieties are to be attached to the protein of interest as seamlessly as possible. Using the semisynthetic Ssp DnaB intein both in form of its wild-type sequence and its evolved M86 mutant, we systematically varied the sequence upstream of the short synthetic IntN fragment using both proteinogenic amino acids and unnatural building blocks. We could show for the wild-type variant that the native N-extein sequence could be reduced to the glycine residue at the (?1) position directly flanking the intein without significant loss of activity. The glycine at this position is strongly preferred over building blocks containing a phenyl group or extended alkyl chain adjacent to the scissile amide bond of the N-terminal splice junction. Despite their negative effects on the splicing yields, these unnatural substrates were well processed in the N–S acyl shift to form the respective thioesters and did not result in an increased decoupling of the asparagine cyclization step at the C-terminal splicing junction. Therefore, the transesterification step appeared to be the bottleneck of the protein splicing pathway. The fluorophore 7-hydroxycoumarinyl-4-acetic acid as a minimal N-extein was efficiently ligated to the model protein, in particular with the M86 mutant, probably because of its higher resemblance to glycine with an aliphatic c-α carbon atom at the (?1) position. This finding indicates a way for the virtually traceless labeling of proteins without inserting extra flanking residues. Due to its overall higher activity, the M86 mutant appears most promising for many protein labeling and chemical modification schemes using the split intein approach.  相似文献   
108.
Labelling of proteins with some extrinsic probe is unavoidable in molecular biology research. Particularly, spectroscopic studies in the optical region require fluorescence modification of native proteins by attaching polycyclic aromatic fluoroprobe with the proteins under investigation. Our present study aims to address the consequence of the attachment of a fluoroprobe at the protein surface in the molecular recognition of the protein by selectively small model receptor. A spectroscopic study involving apomyoglobin (Apo‐Mb) and cyclodextrin (CyD) of various cavity sizes as model globular protein and synthetic receptors, respectively, using steady‐state and picosecond‐resolved techniques, is detailed here. A study involving Förster resonance energy transfer, between intrinsic amino acid tryptophan (donor) and N, N‐dimethyl naphthalene moiety of the extrinsic dansyl probes at the surface of Apo‐Mb, precisely monitor changes in donor acceptor distance as a consequence of interaction of the protein with CyD having different cavity sizes (β and γ variety). Molecular modelling studies on the interaction of tryptophan and dansyl probe with β‐CyD is reported here and found to be consistent with the experimental observations. In order to investigate structural aspects of the interacting protein, we have used circular dichroism spectroscopy. Temperature‐dependent circular dichroism studies explore the change in the secondary structure of Apo‐Mb in association with CyD, before and after fluorescence modification of the protein. Overall, the study well exemplifies approaches to protein recognition by CyD as a synthetic receptor and offers a cautionary note on the use of hydrophobic fluorescent labels for proteins in biochemical studies involving recognition of molecules. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
109.
The phytohemagglutinin of rice seed has been purified by a sequence of steps involving fractionation with ammonium sulfate and successive chromatography on DEAE-and eMcellulose and finally gel filtration on Bio-Gel P-100. The purified rice seed hemagglutinin was shown to be homogeneous by electrophoresis on polyacrylamide gel and its molecular weight was 10,000, calculated from both the Ve/Vo value of gel filtration on Bio-Gel P-100 and the sum of the individual constituents (amino acids, sugars and metals). In addition to amino acid, the rice seed hemagglutinin contained 26.8% covalently bound carbohydrate which was identified and quantitated by gas chromatography of the acetylated alditols. Glucose was the predominant sugar with lesser amounts of glucosamine, xylose, and mannose also being present. And the rice seed hemagglutinin contained 1 g atom of calcium per molecule. The molecular weight of the rice seed hemagglutinin is smallest compared with some of phytohemagglutinins isolated from leguminous seeds and other plant sources. The rice seed hemagglutinin has the blastogenetic activity for human peripheral lymphocytes as well as Phaseolus vulgaris phytohemagglutinins or concanavalin A, jack bean hemagglutinin.  相似文献   
110.
The enzymatic behaviour, amino acid composition and some physical properties of a new endo-N-acetylmuramidase (B-enzyme) of Bacillus subtilis YT–25 were determined and compared with hen’s egg white lysozyme. The molecular weight was estimated to be about 13000 by the sedimentation equilibrium method. The isoelectric point was pH 9.8. The amino acid composition indicates that the enzyme is rich in basic amino acids, especially lysin. Maximal activity on the lysis of cell walls of M. lysodeikticus occurred at pH 6.2. The enzyme was stable at pH 3.5 ~ 6.0. The specific activity for the lysis of cell walls of M. lysodeikticus was less than fourth part of that of hen’s egg white lysozyme. Digest of cell walls of M. lysodeikticus with B-enzyme consisted greater numbers of high molecular products than digest with egg white lysozyme. Substrate specificity of B-enzyme seemed to be different from that of egg white lysozyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号