首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   7篇
  国内免费   31篇
  2023年   3篇
  2022年   3篇
  2021年   2篇
  2020年   9篇
  2019年   10篇
  2018年   9篇
  2017年   14篇
  2016年   9篇
  2015年   8篇
  2014年   9篇
  2013年   21篇
  2012年   8篇
  2011年   7篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   12篇
  2006年   7篇
  2005年   4篇
  2004年   7篇
  2003年   4篇
  2002年   10篇
  2001年   6篇
  2000年   4篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1989年   4篇
  1982年   1篇
  1978年   1篇
  1972年   1篇
排序方式: 共有221条查询结果,搜索用时 31 毫秒
101.
Bruns  Eric  Egeler  Philipp  Roembke  Joerg  Scheffczyk  Adam  Spoerlein  Peter 《Hydrobiologia》2001,463(1-3):185-196
The uptake of chemicals in soil organisms, especially earthworms, has been studied many times. However, in Europe no internationally accepted standardised test guideline for the assessment of bioaccumulation in the soil ecosystem exists. Therefore, the German Federal Environmental Agency recently funded a project in which a standardisable test method for measuring bioaccumulation of chemicals using earthworms and enchytraeids is being developed. In this contribution, initial results with the new method are presented, using two model chemicals (the insecticide lindane and the fungicide hexachlorobenzene). Two enchytraeid species (Enchytraeus luxuriosus and Enchytraeus albidus) were selected as test organisms due to their easy handling and their important ecological role in the soil compartment. Artificial soil and a natural standard soil were used as test substrates. Test concentrations were based on previous results of acute and reproduction toxicity tests performed with the same species. Uptake as well as the elimination of the test substances were examined under standardised conditions in a closed test system. The first results show that both chemicals were accumulated considerably by both enchytraeid species. The bioaccumulation factors (BAFs) of lindane and hexachlorobenzene found for enchytraeids are significantly higher compared to those for lumbricid earthworms. Evaluation of the preliminary data suggests that the smaller species E. luxuriosus accumulated the two chemicals to a greater extent than E. albidus. In most cases, both chemicals were eliminated completely. The use of this new test method appears suitable for the ecotoxicological risk assessment of bioaccumulative chemicals.  相似文献   
102.
This research investigates the fate and transport of methyl tert-butyl ether (MTBE) in phytoremediation, particularly the uptake and volatilization of MTBE in lab-scale hydroponic systems. The research reveals that MTBE was taken up by hybrid poplar cuttings and volatilized to the atmosphere. Volatilization of MTBE occurred through both stems and leaves. The concentration of MTBE in the transpiration stream declined exponentially with height, indicating that the uptake and volatilization along the stems are an important removal mechanism of MTBE in phytoremediation. Volatilization, via diffusion from the stems, has not been directly measured previously. No volatile MTBE metabolites were detected; however, mass balance closure and metabolite detection were not primary objectives of this study. The greatest amount of MTBE in plant biomass was associated with the woody stems from the previous year's growth, owing in part to the large biomass of stems. MTBE in the plant tissues appears to reach a steady state concentration and there does not appear to be an accumulation process that could lead to highly elevated concentrations relative to the groundwater source.  相似文献   
103.
A pot experiment was conducted for three vegetation periods on a sandy soil (pH 7.5) to study the uptake and distribution of Cd in plant tissues of Calamagrostis epigejos (L.) Roth. Cadmium was applied as CdCl2 (a total of 11 solution of 0, 20. 100, and 200 mg Cd l(-1)). HNO3- and water-extractable concentrations of Cd in 2- and 20-cm soil depths were correlated with the applied Cd showing that Cd was very mobile in the soil. The uptake of Cd from soil by Calamagrostis epigejos was directly related to the total soil Cd content and to the water-soluble pool of Cd. The concentrations of Cd in plant tissues (roots, rhizomes, leaves) and litter increased with increased applied Cd. Most of the Cd that was taken up was accumulated in roots (range from 1.88+/-0.42 to 40.96+/-16.71 mg kg(-1) dry mass), followed by rhizomes (0.52+/-0.13 to 25.70+/-6.35 mg kg(-1)) and leaves (0.30+/-0.06 to 9.20+/-1.93 mg kg(-1)). Cd concentrations of the litter were about twofold greater than the concentrations in the leaves (0.67+/-0.07 to 18.98+/-7.00 mg kg(-1)). The bioaccumulation factor (leaf/soil concentration ratio) increased significantly from 0.70+/-0.10 (control) to 1.1+/-0.17 (100 mg Cd l(-1)), but decreased again at the highest Cd level (200 mg Cd l(-1)) toward 0.74+/-0.34, which was not significantly different from the control. The low transfer of Cd from soil to above-ground organs at higher soil Cd concentrations indicates an exclusion mechanism. The leaf/root Cd concentration ratio (translocation factor) shows no significant relationship to increasing soil contamination. Only 4-7% of the total plant Cd was accumulated in the above-ground tissues. The phytoextraction potential (total Cd removed from soil) within three growing seasons ranged from 0.11 to 0.25% of the total soil Cd. Total output in above-ground living and dead plant material of C. epigejos would be approximately 20 g ha(-1) a(-1) for the lowest contamination level (+20 mg Cd per pot) and approximately 275 g ha(-1) a(-1) for the highest contamination level (+200 mg Cd per pot). This is within the range where an application for phytoextraction of Cd has been suggested by other authors. However, we conclude that the practical use of C. epigejos for phytoremediation is not mainly in the field of phytoextraction, but phytostabilization. C. epigejos has the capability to structurally stabilize the soil and reduce Cd contamination spread due to erosion. The uptake of the available Cd pool and accumulation in below-ground biomass may further prevent leaching into ground water.  相似文献   
104.
105.
污染场地土壤生态风险评估能够为准确制定土壤环境质量标准、污染土壤修复目标、土壤修复后效果评估及安全利用提供科学依据,是保障土壤健康和安全的重要手段。“证据-权重法”由于具有系统性、整体性和科学性的特点在风险评估中应用广泛。然而,当前“证据-权重法”大多依赖专家打分法进行权重设置,并且在实际操作中难以获得定量化的、信息全面的完整证据链,风险评估结果缺乏客观性和可比性。针对以上问题,本研究耦合美国EPA的四步法与层级法构建了“证据-权重法”污染场地土壤生态风险评估框架,统一了每个层级的评估方法与程序。采用多标准决策分析对权重进行定量化,通过预先设置证据链之间的层级来保证其相对独立性,基于基质试验和野外调查保证场地的针对性。最后,以靖江某电镀场地为案例进行实证研究,结果表明: 所构建的方法具有较强的可操作性,评估结果具有较高的客观性、科学性和准确性。  相似文献   
106.
ABSTRACT Soil heavy metal contamination, a major threat due to industrialization, can be tackled by an efficient and economical process called bioremediation. Mushrooms are employed to accumulate heavy metals from soil due to their high metal accumulation potential and better adaptability. The bioaccumulation potential of Galerina vittiformis was already reported for individual metals. At natural conditions, since soil consists of more than one polluting metal, more focus has to be given to multimetal systems. In this study, multimetal accumulation potential was analyzed using central composite design, and the responses obtained were analyzed using response surface methodology. Heavy metals such as Cu(II), Cd(II), Cr(VI), Pb(II), and Zn(II) were subjected to biosorption at 10–250 mg/kg concentrations along with pH 5–8. The results showed that the preference of the organism for the five metals under study was in the order Pb(II) > Zn(II) > Cd(II) > Cu(II) > Cr(VI) at pH 6.5 under multimetal condition. The study also indicates that the metal interaction pattern in multimetal interaction is a property of their ionic radii. The response surface methodology clearly explains the effect of interaction of heavy metals on the accumulation potential of the organism using three-dimensional response plots. The present work suggests that the fungus Galerina vittiformis could be employed as a low-cost metal removal agent from heavy metal–polluted soil.  相似文献   
107.
黄粉虫幼虫对硒的生物积累   总被引:1,自引:0,他引:1  
在饲料中添加含硒化合物喂养黄粉虫Tenebrio molitor L.幼虫,测定幼虫硒含量、粪便硒含量和体重的变化,计算黄粉虫幼虫特定生长率及幼虫对硒生物积累系数,分析黄粉虫有效积累硒的条件。结果表明,饲料硒含量在15~20mg/kg时,幼虫硒含量明显提高,对硒的生物积累系数高于其它试验组水平,饲料硒含量过高,幼虫硒含量降低,正常生长受到抑制。黄粉虫幼虫特定生长率、取食量、排粪量、干物质含量随着饲料硒含量的增加而降低,死亡率、粪便硒含量随着饲料硒含量的增加而增大。饲料硒含量为15~20mg/kg时黄粉虫幼虫对硒的生物积累效果最好。  相似文献   
108.
Untreated industrial wastewater (IWW) creates a number of problems in ecosystem. This study highlights the possibility of using IWW for forest irrigation. Five tree species were selected for this study, Albizia lebbeck, Bauhinia purpurea, Dalbergia sissoo, Millettia peguensis, and Pongamia pinnata, and these species were grown in pots and were irrigated with different concentrations of IWW, rich in heavy metals. All the species showed positive results for fresh weight, plant height, and stem diameter. The maximum proline content was observed in B. purpurea (6.33), whereas the least quantity was observed in P. pinnata (3.89). Lead uptake (163.801?mg/day) by B. purpurea was promising. Uptake of Cr and Cu was slow in all species. Translocation factor of D. sissoo was maximum, that is 3.37. This study successfully combats wastewater problem. These five species are much tolerant in IWW and can be successfully used for phytoextraction processes. The chromium accumulation in stem is as follows: D. sissoo?>?A. lebbeck?>?M. peguensis?>?P. pinnata?>?B. purpurea. Metal Bioaccumulation in leaf and root was less. The idea is to utilize IWW to generate urban forests (in eco-friendly and sustainable way), which can reduce multiple problems such as IWW toxicity and air pollution through urban forestry.  相似文献   
109.
The identification of plants with high arsenic hyperaccumulating efficiency from water is required to ensure the successful application of phytoremediation technology. Five dominant submerged plant species (Vallisneria natans (Lour.) Hara., Potamageton crispus L., Myriophyllum spicatum L., Ceratophyllum demersum L. and Hydrilla verticillata (L.f.) Royle) in China were used to determine their potential to remove As from contaminated water. V. natans had the highest accumulation of As among them. The characteristics of As accumulation, transformation and the effect of phosphate on As accumulation in V. natans were then further studied. The growth of V. natans was not inhibited even when the As concentration reached 2.0 mg L?1. After 21 d of As treatment, the bioconcentration factor (BCF) reached 1300. The As concentration in the environment and exposure time are major factors controlling the As concentration in V. natans. After being absorbed, As(V) is efficiently reduced to As(III) in plants. The synthesis of non-enzymic antioxidants may play an important role under As stress and increase As detoxication. In addition, As(V) uptake by V. natans was negatively correlated with phosphate (P) uptake when P was sufficiently supplied. As(V) is probably taken up via P transporters in V. natans.  相似文献   
110.
Most metals disperse easily in environments and can be bioconcentrated in tissues of many organisms causing risks to the health and stability of aquatic ecosystems even at low concentrations. The use of plants to phytoremediation has been evaluated to mitigate the environmental contamination by metals since they have large capacity to adsorb or accumulate these elements. In this study we evaluate Salvinia minima growth and its ability to accumulate metals. The plants were cultivated for about 60 days in different concentrations of Cd, Ni, Pb and Zn (tested alone) in controlled environmental conditions and availability of nutrients. The results indicated that S. minima was able to grow in low concentrations of selected metals (0.03 mg L?1 Cd, 0.40 mg L?1 Ni, 1.00 mg L?1 Pb and 1.00 mg L?1 Zn) and still able to adsorb or accumulate metals in their tissues when cultivated in higher concentrations of selected metals without necessarily grow. The maximum values of removal metal rates (mg m2 day?1) for each metal (Cd = 0.0045, Ni = 0.0595, Pb = 0.1423 e Zn = 0.4046) are listed. We concluded that S. minima may be used as an additional tool for metals removal from effluent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号