首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   42篇
  国内免费   6篇
  2023年   10篇
  2022年   10篇
  2021年   19篇
  2020年   12篇
  2019年   13篇
  2018年   22篇
  2017年   14篇
  2016年   15篇
  2015年   22篇
  2014年   23篇
  2013年   35篇
  2012年   22篇
  2011年   18篇
  2010年   16篇
  2009年   13篇
  2008年   12篇
  2007年   22篇
  2006年   15篇
  2005年   9篇
  2004年   21篇
  2003年   18篇
  2002年   13篇
  2001年   8篇
  2000年   8篇
  1999年   13篇
  1998年   9篇
  1997年   9篇
  1996年   14篇
  1995年   7篇
  1994年   9篇
  1993年   5篇
  1992年   15篇
  1991年   7篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
排序方式: 共有515条查询结果,搜索用时 31 毫秒
501.
The axonal transport of neurotransmitter receptors is thought to be a common phenomenon in many neuronal systems. The “machinery” for receptor (protein) “assembly” is found in the cell bodies of neurons and the “manufacture” of receptors takes place there. These receptors are then “shipped” to their ultimate destinations by a transport process. This is an axonal transport mechanism in the case of presynaptic receptors. Some form of transport process may also exist to send receptors out into the dendritic arborizations of neurons, although the latter is more difficult to verify. Axonal transport has been demonstrated, in the peripheral nervous systems, for many different neurotransmitter receptors. In the central nervous system, the results are less clear, but indicate the presence of a transport mechanism for catecholamine, acetylcholine, and opiate sites. One important component then, in the development of receptors, is the transportation to terminal membrane sites where they are ultimately incorporated and available for interaction with neurotransmitters and drugs.  相似文献   
502.
AbstractThe development of new treatments for malignant melanoma, which has the worst prognosis among skin neoplasms, remains a challenge. The tumor microenvironment aids tumor cells to grow and resist to chemotherapeutic treatment. One way to mimic and study the tumor microenvironment is by using three-dimensional (3D) co-culture models (spheroids). In this study, a melanoma heterospheroid model composed of cancer cells, fibroblasts, and macrophages was produced by liquid-overlay technique using the agarose gel. The size, growth, viability, morphology, cancer stem-like cells population and inflammatory profile of tumor heterospheroids and monospheroids were analyzed to evaluate the influence of stromal cells on these parameters. Furthermore, dacarbazine cytotoxicity was evaluated using spheroids and two-dimensional (2D) melanoma model. After finishing the experiments, it was observed the M2 macrophages induced an anti-inflammatory microenvironment in heterospheroids; fibroblasts cells support the formation of the extracellular matrix, and a higher percentage of melanoma CD271 was observed in this model. Additionally, melanoma spheroids responded differently to the dacarbazine than the 2D melanoma culture as a result of their cellular heterogeneity and 3D structure. The 3D model was shown to be a fast and reliable tool for drug screening, which can mimic the in vivo tumor microenvironment regarding interactions and complexity.Graphic abstract   相似文献   
503.
The delivery of proteins to the presynaptic terminals of guinea pig retinal ganglion cells by two of the major components of axonal transport, and the subsequent persistence and turnover of those proteins were examined in this study. Ganglion cell proteins were radiolabeled by intravitreal injection of radiolabeled amino acids and radioactive axonally transported proteins were analyzed in synaptosomes prepared from the superior colliculi. This procedure allowed examination of presynaptic components of ganglion cell synapses without having to compensate for postsynaptic or other unidentified contaminants. Each of the two major axonal transport components supplies a large number of proteins to the presynaptic terminal, in relative quantities similar although not identical to those seen in the axon. Proteins conveyed by the fast component of axonal transport reached the terminals by 3 h after intraocular injection, peaked by 24 h, and were largely undetectable by 15 days. Slow component b proteins reached the terminals by 12 days, peaked around 21 days, and persisted up to 63 days in the terminals. Proteins in both components demonstrated differential turnover relative to cotransported proteins once they reached the terminals. Differential turnover may account for change in relative concentration of a particular protein required to meet new functional demands on that protein once it enters the terminal.  相似文献   
504.
The development of the peripheral nervous system (PNS) is a highly dynamic process, during which motor and sensory axons innervate distal targets, such as skeletal muscles and skin. Axonal function depends critically on support from Schwann cells, the main glial cell type in the PNS. Schwann cells originate from the neural crest, migrate along outgrowing axons and associate with axons along their entire length prior to ensheathment or myelination. How axonal growth and the migration of Schwann cells is coordinated at the level of reciprocal axon-glial signaling is the fascinating subject of ongoing research. Neuregulin-1 (NRG1) type III, an axonal membrane-bound ligand for receptor tyrosine kinases of the ErbB family, acts as a “master regulator” of peripheral myelination. In addition, NRG1-ErbB signaling directs the development of the Schwann cell lineage and regulates the proliferation and survival of Schwann cells. Studies in zebrafish have identified a direct role of NRG1 type III in Schwann cell migration, but to what extend NRG1 serves a similar function in the mammalian PNS is not clear. We have employed a mouse superior cervical ganglion explant culture system, in which the migration of endogenous Schwann cells along outgrowing axons can be visualized by time-lapse imaging. Using this approach, we found that NRG1 type III-ErbB signaling regulates the colonization of distal axonal segments by Schwann cells. However, our data suggest an indirect effect of NRG1 type III-ErbB signaling via the support of Schwann cell survival in proximal axonal regions rather than a direct effect on Schwann cell motility.  相似文献   
505.
A numerical method of the left ventricle (LV) deformation, an elongation model, was put forth for the study of LV fluid mechanics in diastole. The LV elongated only along the apical axis, and the motion was controlled by the intraventricular flow rate. Two other LV models, a fixed control volume model and a dilation model, were also used for model comparison and the study of LV fluid mechanics. For clinical sphere indices (SIs, between 1.0 and 2.0), the three models showed little difference in pressure and velocity distributions along the apical axis at E-peak. The energy dissipation was lower at a larger SI in that the jet and vortex development was less limited by the LV cavity in the apical direction. LV deformation of apical elongation may represent the primary feature of LV deformation in comparison with the secondary radial expansion. The elongation model of the LV deformation with an appropriate SI is a reasonable, simple method to study LV fluid mechanics in diastole.  相似文献   
506.
507.
Development of direct axonal connections of the hypothalamic mammillary bodies with ventral and dorsal tegmental nuclei of Gudden was studied on fixed rat brains from day 14 of embryonic development until day 10 of postnatal development using the method of diffusion of the lipophilic fluorescent carbocyanine tracer 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate along the neuronal membranes. The tracer was inserted into the mammillary bodies or into the tegmentum and, after incubation in a fixative, fluorescent nerve cells and nerve fibers were visualized in the brain tissue. The mammillotegmental tract was found to start developing earlier than other projection systems of the mammillary bodies. On days 14–15 of embryonic development, it was visualized as a bundle of axons running from the mammillary bodies caudally to the midbrain. A group of neurons in the midbrain tegmentum and their axons going to the mammillary bodies via the mammillary peduncle were first visualized on day 19 of embryonic development. The mammillotegmental tract and mammillary peduncle developed progressively from the moment of birth. Ventral and dorsal tegmental nuclei were formed in the midbrain by day 10 of the postnatal development. Thus, the formation of reciprocal connections of the mammillary bodies with midbrain tegmental nuclei was first described during perinatal development in rats.  相似文献   
508.
The three adducin proteins (α, β, and γ) share extensive sequence, structural, and functional homology. Heterodimers of α‐ and β‐adducin are vital components of the red cell membrane skeleton, which is required to maintain red cell elasticity and structural integrity. In addition to anemia, targeted deletion of the α‐adducin gene (Add1) reveals unexpected, strain‐dependentnon‐erythroid phenotypes. On an inbred 129 genetic background, Add1 null mice show abnormal inward curvature of the cervicothoracic spine with complete penetrance. More surprisingly, a subset of 129‐Add1 null mice develop severe megaesophagus, while examination of peripheral nerves reveals a reduced number of axons in 129‐Add1 null mice at four months of age. These unforeseen phenotypes, described here, reveal new functions for adducin and provide new models of mammalian disease. genesis 50:882–891, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
509.
The effects of systemically introduced neurotoxic solvents 2,5-hexanedione (2,5-HD) and 3,4-dimethyl-2,5-hexanedione (DMHD) on retrograde axonal transport (RT) of125I-labeled tetanus toxin (TT) was studied in rat and mouse sciatic nerves. The rate of retrograde transport of TT in control rat sciatic nerves was slightly higher (6.8±0.4 mm/h) than in mouse sciatic nerves (5.4±0.5 mm/h). A single high dose of 2,5-HD (1,000 mg/kg, i.p.) produced a time-dependent effect on RT in mouse sciatic nerves. 2,5-HD caused a gradual decrease in the velocity of RT (approximately 65% inhibition between 2.0–2.5 h) with a reversal to normal rate 3–5 h after the toxin administration. The effect of DMHD on RT was examined following semi-chronic treatment in rats. DMHD caused a significant decrease (approximately 50%) in the rate of TT transport, in addition, it produced weight loss and hind-limb paralysis.I had the good opportunity of being a member of Professor Alan N. Davison' research team during 1971–1977. This research paper is dedicated to his retirement.  相似文献   
510.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号