首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4675篇
  免费   269篇
  国内免费   984篇
  2024年   4篇
  2023年   74篇
  2022年   88篇
  2021年   123篇
  2020年   144篇
  2019年   146篇
  2018年   121篇
  2017年   128篇
  2016年   176篇
  2015年   167篇
  2014年   182篇
  2013年   357篇
  2012年   215篇
  2011年   230篇
  2010年   177篇
  2009年   222篇
  2008年   199篇
  2007年   253篇
  2006年   274篇
  2005年   268篇
  2004年   256篇
  2003年   280篇
  2002年   233篇
  2001年   197篇
  2000年   184篇
  1999年   140篇
  1998年   106篇
  1997年   147篇
  1996年   127篇
  1995年   92篇
  1994年   86篇
  1993年   76篇
  1992年   65篇
  1991年   60篇
  1990年   65篇
  1989年   41篇
  1988年   43篇
  1987年   32篇
  1986年   13篇
  1985年   25篇
  1984年   24篇
  1983年   14篇
  1982年   21篇
  1981年   14篇
  1980年   8篇
  1979年   7篇
  1978年   5篇
  1977年   5篇
  1976年   6篇
  1973年   4篇
排序方式: 共有5928条查询结果,搜索用时 15 毫秒
101.
对稻萍结合系统细绿萍共生固N量研究表明,萍的固N力在整个生长季不同时期有所变化.最高固N率出现在6月初,萍固N量随其接种量和水稻行距增加而增加.50~10cm宽窄行交替的水稻行距和1500kg·hm-2的萍接种量的稻萍结合系统的总固N量为107.1kg·hm-2,而30cm等行距的325kg·hm-2的萍接种量的稻-萍结合系统的总固N量仅为36.0kg·hm-2  相似文献   
102.
不同育秧方式和插植密度下晚籼稻群体动态结构存在差异。旱育秧群体分蘖速度快,分蘖能力强。稀植可促进个体分蘖多发、有效穗数增多,但旱育稀植并无分蘖早发的优势。旱育稀植使主茎基部叶片变短而上部叶片变长,生育后期叶面积消长平稳,地上部干物质积累较多。旱育秧、稀植都使主茎叶总数增多,全生育期延长。  相似文献   
103.
水稻叶片对模拟酸雨伤害的生理反应   总被引:4,自引:0,他引:4  
水稻暴露于pH2.5~4.2的模拟酸雨中2个月后测定表明:叶片叶绿素含量下降,细胞液离子外渗率增加,气孔阻抗增高,蒸腾速率降低。不同叶位的水稻叶片对模拟酸雨的敏感性不同,杂交稻(汕优63)对模拟酸雨的敏感性较粳稻(中粳864)高  相似文献   
104.
Intraspecific Variation in Chemical Attraction of Rice to Insect Predators   总被引:2,自引:0,他引:2  
The olfactory response of predators of the brown planthopper,Nilaparvata lugensStål, to different genotypes of rice (14 cultivars and breeding lines ofOryza sativaL. and 1 wild species,Oryza nivaraSharma et Shastry) was measured in an airflow olfactometer. Odor from rice plants attracted more females of the mirid predatorCyrtorhinus lividipennisReuter than plain air (control) on only 6 of the 15 rice genotypes. Orientation ofC. lividipennistoward volatiles of certain rice genotypes was apparent even when the plants were free of the brown planthopper. However, the predator distinguished between prey-infested and uninfested plants and preferred plants with eggs over plants with nymphs. The predator did not distinguish different stages of plant growth (vegetative, booting, or flowering). Plants artificially injured to simulate brown planthopper oviposition wounds were not as attractive to the predator as plants on which the planthopper had oviposited. The preassay preconditioning on the cultivar TN1 did not produce a predator bias for this genotype. This suggests that rearing effects or chemically mediated associative learning reported for some natural enemies did not influenceC. lividipennis'host response. Results with another predator, the coccinellidMicraspis hirashimaiSasaji, produced less consistent behavior. Planthopper-infested plants attracted more females ofM. hirashimaithan unifested plants in only 1 of the 12 rice genotypes evaluated. Implications for augmenting predators by rice cultivar selection and modification are discussed.  相似文献   
105.
106.
Summary Iron tolerance of rice (Oryza sativa L.) was investigated using an oxygen depleted hydroculture system. Treatment with high concentrations of Fe2+ induced yellowing and bronzing symptoms as well as iron coatings at the root surface. Root and shoot growth were inhibited by increasing iron concentration in the medium. All symptoms were more pronounced in an iron sensitive cultivar (IR 64) compared to an iron tolerant one (IR 9764-45-2). Superoxide dismutase and peroxidase activity of root extracts of IR 97 were about twice that of IR 64 in untreated control plants. No significant increase of peroxidase activity was detected with increasing iron concentration in the medium. Catalase activity of IR 64 was slightly higher than that of IR 97, independent of iron concentration.Abbreviations SOD Superoxide dismutase (EC 1.15.1.1) - POD peroxidase (EC 1.11.1.7) - EDTA ethylenediamintetraacetic acid - fwt fresh weight - Hepes (N-[2-hydroxyethyl]piperazine-N-[2-ethanesulfonic acid]) - BSA bovine serum albumin - IR 97 IR 9764-45-2 an iron tolerant rice cultivar - IR 64 iron sensitive rice cultivar - PM plasma membrane  相似文献   
107.
Effects of salinity on seed set in rice   总被引:15,自引:1,他引:14  
Salinity reduces fertility in rice (Oryza sativa L.), but little is known of the underlying cause(s). In order to determine the relative importance of pollen viability and stigmatic receptivity for seed setting, plants of the rice cultivar IR36 were treated with ‘artificial’ sea water (0,10, 25 or 5Omol?3 with respect to NaCl) from 1 month after germination until the main tiller flowered. An increase in the salinity in the medium resulted in a decrease in the number of fertile florets and in the viability of pollen as determined both by pollen germination and by pollen staining with the tetrazolium salt 3-(4,5-dimethyl-ithyazolyl)-2,5-diphenyl monotetrazolium bromide. In order to assess the effects of salt on stigmas, seed production was measured for salt-grown and non-salt-grown female plants pollinated with viable pollen (from plants grown in the absence of salt). The percentage of seed set was reduced by 38% when the female plants were grown in 1Omol m?3 Na and by 72% at 25mol m?3 Na: no seed setting was recorded for plants grown in 50mol m?3 Na. Comparisons between crosses involving male and female parents grown at different salinities indicated that effects on the female plants dominated those on pollinator plants. Mineral analysis of leaves of different ages showed that there was a gradient of K concentration from leaf to leaf which was opposite to that of Na and Cl at all levels of applied salinity: K was maximal in the flag leaf, where Na and Cl were minimal. Analysis also revealed that there was an increase in the concentrations of Na and Cl and a decrease in the concentration of K in the pollen grains and stigmas of plants subjected to saline conditions. Correlations between the concentration of Na and Cl in pollen and pollen staining and pollen germination in vitro suggest that Na and Cl perse were responsible for the poor viability. The change in ionic concentrations in pollen and stigmas was much larger than that in the younger leaves, and in particular very much larger than that in the lemmas and paleas.  相似文献   
108.
It has been a long-standing goal in the field of biological nitrogen fixation to extend nitrogen-fixing symbioses to presently non-nodulated cereal plants, such as rice. A number of researchers have recently described the induction of nodule-like structures on the roots of cereals primarily by rhizobia, in either the presence or absence of plant cell-wall-degrading enzymes or plant hormones. We briefly review this research and discuss the potential problems associated with the introduction of nitrogen-fixing microbes in novel physiological environments, such as rice roots. The results of experiments carried out in China on the induction of nodule-like structures on rice roots by rhizobia are highlighted. In addition, we present preliminary results of a series of experiments designed to repeat and evaluate these results using a variety of microscopic techniques and molecular genetic approaches.  相似文献   
109.
Methane emission from a wetland rice field as affected by salinity   总被引:4,自引:0,他引:4  
The impact of salinity on CH4 emission was studied by adding salt to a Philippine rice paddy, increasing pore water EC to approx. 4 dS.m-1 Methane emission from the salt-amended plot and adjacent control plots was monitored with a closed chamber technique. The addition of salt to the rice field caused a reduction by 25% in CH4 emission. Rates of methane emissions from intact soil cores were measured during aerobic and anaerobic incubations. The anaerobic CH4 fluxes from the salt-amended soil cores were three to four times lower than from cores of the control plot, whereas the aerobic CH4 fluxes were about equal. Measurements of the potential CH4 production with depth showed that the CH4 production in the salt-amended field was strongly reduced compared to the control field. Calculation of the percentage CH4 oxidized of the anaerobic flux indicated that CH4 oxidation in the salt-amended plot was even more inhibited than CH4 production. The net result was about equal aerobic CH4 fluxes from both salt-amended plots and non-amended plots. The data illustrate the importance of both CH4 production and CH4 oxidation when estimating CH4 emission and show that the ratio between CH4 production and CH4 oxidation may depend on environmental conditions. The reduction in CH4 emission from rice paddies upon amendment with salt low in sulfate is considerably smaller than the reduction in CH4 emission observed in a similar study where fields were amended with high-sulfate containing salt (gypsum). The results indicate that CH4 emissions from wetland rice fields on saline, low-sulfate soils are lower than CH4 emissions from otherwise comparable non-saline rice tields. However, the reduction in CH4 emission is not proportional to the reduction in CH4 production  相似文献   
110.
In a phytotron experiment four rice varieties (Pokkali, IR 28, IR 50, IR 31785-58-1-2-3-3) grown in individual pots were subjected to low (40/55% day/night) and high (75/90%) air humidity (RH), while soil salinity was gradually increased by injecting 0, 30, 60 or 120 mM NaCl solutions every two days. Bulk root and stem base water potential (SWP), abscisic acid (ABA) content of the xylem sap and stomatal resistance (rs) of the youngest fully expanded leaf were determined two days after each salt application. The SWP decreased and xylem ABA and rs increased throughout the 8 days of treatment. The effects were amplified by low RH. A chain of physiological events was hypothesized in which high soil electric conductivity (EC) reduces SWP, followed by release of root-borne ABA to the xylem and eventually resulting in stomatal closure. To explain varietal differences in stomatal reaction, supposed cause and effect variables were compared by linear regression. This revealed strong differences in physiological reactions to the RH and salt treatments among the test varieties. Under salt stress roots of IR 31785-58-1-2-3-3 produced much ABA under low RH, but no additional effect of low RH on rs could be found. By contrast, Pokkali produced little ABA, but rs was strongly affected by RH. RH did not affect the relationships EC vs. SWP and SWP vs. ABA in Pokkali, IR 28, and IR 50, but the relationship ABA vs. rs was strongly affected by RH. In IR 31785-58-1-2-3-3 RH strongly affected the relationship SWP vs. ABA, but had no effect on ABA vs. rs and EC vs. rs. The results are discussed regarding possible differences in varietal stomatal sensitivity to ABA and their implications for varietal salt tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号