首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8379篇
  免费   1430篇
  国内免费   2114篇
  2024年   20篇
  2023年   316篇
  2022年   232篇
  2021年   225篇
  2020年   472篇
  2019年   471篇
  2018年   548篇
  2017年   509篇
  2016年   510篇
  2015年   508篇
  2014年   528篇
  2013年   618篇
  2012年   415篇
  2011年   523篇
  2010年   349篇
  2009年   467篇
  2008年   447篇
  2007年   449篇
  2006年   445篇
  2005年   373篇
  2004年   323篇
  2003年   328篇
  2002年   318篇
  2001年   273篇
  2000年   231篇
  1999年   201篇
  1998年   202篇
  1997年   156篇
  1996年   153篇
  1995年   173篇
  1994年   145篇
  1993年   117篇
  1992年   124篇
  1991年   80篇
  1990年   92篇
  1989年   85篇
  1988年   77篇
  1987年   41篇
  1986年   50篇
  1985年   67篇
  1984年   46篇
  1983年   20篇
  1982年   50篇
  1981年   29篇
  1980年   22篇
  1979年   26篇
  1978年   21篇
  1977年   10篇
  1976年   15篇
  1958年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
32.
When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation. We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land‐use and soil management. We review literature that reports changes in soil organic carbon after changes in land‐use that favour carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration that are possible with management, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration in soil. There is a large variation in the length of time for and the rate at which carbon may accumulate in soil, related to the productivity of the recovering vegetation, physical and biological conditions in the soil, and the past history of soil organic carbon inputs and physical disturbance. Maximum rates of C accumulation during the early aggrading stage of perennial vegetation growth, while substantial, are usually much less than 100 g C m?2 y?1. Average rates of accumulation are similar for forest or grassland establishment: 33.8 g C m?2 y?1 and 33.2 g C m?2 y?1, respectively. These observed rates of soil organic C accumulation, when combined with the small amount of land area involved, are insufficient to account for a significant fraction of the missing C in the global carbon cycle as accumulating in the soils of formerly agricultural land.  相似文献   
33.
The dissolved inorganic carbon (DIC) cycle in a softwater lake was studied using natural variations of the stable isotopes of carbon,12C and13C. During summer stratification there was a progressive decrease in epilimnion DIC concentration with a concomitant increase in 13CDIC), due to preferential uptake of12C by phytoplankton and a change in the dominant CO2 source from inflow andin situ oxidation to invasion from the atmosphere. There was an increase in hypolimnion DIC concentration throughout summer with a concomitant general decrease in 13CDIC from oxidation of the isotopically light particulate organic carbon that sank down through the thermocline from the epilimnion.Mass balance calculations of DI12C and DI13C in the epilimnion for the summer (June 23–September 25) yield a mean rate of net conversion of DIC to organic carbon (Corg) of 430 ± 150 moles d-1 (6.5 ± 1.8 m moles m-2 d-1. Net CO2 invasion from the atmosphere was 420 ± 120 moles d-1 (6.2 ± 1.8 m moles m-2 d-1) with an exchange coefficient of 0.6 ± 0.3m d-1. These results imply that at least for the summer months the phytoplankton obtained about 90% of their carbon from atmosphere CO2. About 50% of CO2 invasion and conversion to Corg for the summer occurred during a two week interval in mid-summer.DIC concentration increased in the hypolimnion at a rate of 350 ± 70 moles DIC d-1 during summer stratification. The amount of DIC added to the hypolimnion was equivalent to 75 ± 20% of net conversion of DIC to Corg in the euphotic zone over spring and summer implying rapid degradation of POC in the hypolimnion. The 13C of DIC added to the deep water (-22.) was too heavy to have been derived from oxidation of particulate organic carbon alone. About 20% of the added DIC must have diffused from hypolimnetic sediments where relatively heavy CO2 (-7) was produced by a combination of POC oxidation and as a by-product of methanogenesis.  相似文献   
34.
35.
36.
Summary Soil temperature, moisture, and CO2 were monitored at four sites along an elevation transect in the eastern Mojave Desert from January to October, 1987. Climate appeared to be the major factor controlling CO2 partial pressures, primarily through its influence of rates of biological reactions, vegetation densities, and organic matter production. With increasing elevation, and increasing actual evapotranspiration, the organic C, plant density, and the CO2 content of the soils increased. Between January and May, soil CO2 concentrations at a given site were closely related to variations in soil temperature. In July and October, temperatures had little effect on CO2, presumably due to low soil moisture levels. Up to 75% of litter placed in the field in March was lost by October whereas, for the 3 lower elevations, less than 10% of the litter placed in the field in April was lost through decomposition processes.  相似文献   
37.
Summary Characteristics of inorganic carbon assimilation by photosynthesis in seawater were investigated in six species of the Fucales (five Fucaceae, one Cystoseiraceae) and four species of the Laminariales (three Laminariaceae, one Alariaceae) from Arbroath, Scotland. All of the algae tested could photosynthesise faster at high external pH values than the uncatalysed conversion of HCO 3 - to CO2 can occur, i.e. can use external HCO 3 - . They all had detectable extracellular carbonic anhydrase activity, suggesting that HCO 3 - use could involve catalysis of external CO2 production, a view supported to some extent by experiments with an inhibitor of carbonic anhydrase. All of the algae tested had CO2 compensation concentrations at pH 8 which were lower than would be expected from diffusive entry of CO2 supplying RUBISCO as the initial carboxylase, consistent with the operation of energized entry of HCO 3 - and / or CO2 acting as a CO2 concentrating mechanism. Quantitative differences among the algae examined were noted with respect to characteristics of inorganic C assimilation. The most obvious distinction was between the eulittoral Fucaceae, which are emersed for part of, or most of, the tidal cycle, and the other three families (Cystoseiraceae, Laminariaceae, Alariaceae) whose representatives are essentially continually submersed. The Fucaceae examined are able to photosynthesise at high pH values, and have lower CO2 compensation concentrations, and lower K1/2 values for inorganic C use in photosynthesis, at pH 8, than the other algae tested. Furthermore, the Fucaceae are essentially saturated with inorganic C for photosynthesis at the normal seawater concentration at pH 8 and 10°C. These characteristics are consistent with the dominant role of a CO2 concentrating mechanism in CO2 acquisition by these plants. Other species tested have characteristcs which suggest a less effective HCO 3 - use and CO2 concentrating mechanism, with the Laminariaceae being the least effective; unlike the Fucaceae, photosynthesis by these algae is not saturated with inorganic C in normal seawater. Taxonomic and ecological implications of these results are considered in relation to related data in the literature.  相似文献   
38.
External ATP enhanced stomatal opening of Commelina communis L. differently from EDTA. ATP was more effective in opening stomata than EDTA, when both were applied in amounts yielding equivalent free Ca2+ concentration. The stimulation by ATP depended upon its de-phosphorylation and was not due to the P1 released. Hence an energetical contribution of external ATP appears possible. Increase in CO2 concentration increased the stimulation of stomatal opening by ATP and diminished the internal ATP level, ATP/(ADP+AMP) ratio and respiration rate.  相似文献   
39.
The dose- and time-response effects of 3 days of 6 h day-time sequential exposures to NO2, SO2 and SO2+NO2 of 0.45–1.81 μl l−1 (ppm) SO2 and 1.50–7.65 μl l−1 NO2 on photosynthesis, transpiration and dark respiration were examined for nine Carpatho-Ukrainian half-sib families and a population from the GFR ('Westerhof') of Norway spruce [ Piecea abies (L.) Karst.], all in their 5th growing season.
SO2+NO2 inhibited photosynthesis and transpiration and stimulated dark respiration more than SO2 alone. SO2 and SO2+NO2 at the lowest concentrations inhibited night transpiration, but increased it at the highest concentration, the strongest effects being obtained with combined exposures. Photosynthesis of the different half-sib families was affected significantly differently by SO2+NO2 exposures. NO2 alone had no effects.
Sensitivity to transpiration decline correlated negatively with branch density. Height of trees correlated postitively with decline sensitivity in the seed orchard. The distribution of photosynthesis and transpiration sensitivities over all tested half-sib families correlated negatively with the distribution of decline sensitivity of their parents in a rural Danish seed orchard. The relative photosynthesis and transpiration sensitivities may thus serve as diagnostic parameters for selecting against novel spruce decline.  相似文献   
40.
Seven years after fertilization the rate of CO2 production in the soil samples taken from the organic horizons of a poor pine forest site (Calluna vulgaris site type), treated with urea or ammonium nitrate with lime, was lower than that in the unfertilized soil. The same trend was also observed in samples of theEmpetrum-Calluna site type 14 years after fertilization. In the more fertileVaccinium myrtillus site type these rapidly-soluble N fertilizers had a long-term enhancing effect on the production of CO2. Apatite and biotite eliminated the decreasing effect of urea on the production of CO2. One reason for this might be the long-term increase in soil pH caused by apatite and biotite, or their constituents (Ca, Mg, K, P). Nitroform (a slow-releasing N fertilizer) had no statistically significant effect on the production of CO2 in soil samples from any of the forest types. Despite the high N mineralization in the samples from nitroform fertilized soils there was no nitrification, and the high content of total N indicated that after nitroform fertilization the losses of N were low.The correlation between the net mineralization values for C (CO2 production) and N was poor. However, multiple linear regression analysis, which also took into account the effect of nutrients and pH, indicated that there was a link between the mineralization of C and N.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号