首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2455篇
  免费   220篇
  国内免费   325篇
  2024年   5篇
  2023年   63篇
  2022年   42篇
  2021年   78篇
  2020年   121篇
  2019年   128篇
  2018年   84篇
  2017年   100篇
  2016年   88篇
  2015年   111篇
  2014年   136篇
  2013年   205篇
  2012年   126篇
  2011年   125篇
  2010年   83篇
  2009年   113篇
  2008年   121篇
  2007年   121篇
  2006年   137篇
  2005年   108篇
  2004年   92篇
  2003年   79篇
  2002年   77篇
  2001年   78篇
  2000年   54篇
  1999年   45篇
  1998年   70篇
  1997年   46篇
  1996年   40篇
  1995年   30篇
  1994年   38篇
  1993年   31篇
  1992年   30篇
  1991年   19篇
  1990年   24篇
  1989年   19篇
  1988年   17篇
  1987年   7篇
  1986年   10篇
  1985年   19篇
  1984年   14篇
  1983年   17篇
  1982年   9篇
  1981年   9篇
  1980年   5篇
  1979年   6篇
  1978年   6篇
  1977年   8篇
  1976年   2篇
  1973年   2篇
排序方式: 共有3000条查询结果,搜索用时 31 毫秒
81.
Habitat preferences need to be understood if species are to be adequately managed or conserved. Habitat preferences are presumed to reflect requirements for food, shelter and breeding, as well as interactions with predators and competitors. However, one or more of these requirements may dominate. Tree‐cavity‐dependent wildlife species are one example where shelter or breeding site requirements may dominate. We installed 120 nest boxes across 40 sites to target the vulnerable Brush‐tailed Phascogale (Phascogale tapoatafa) and the non‐threatened Sugar Glider (Petaurus breviceps). The provision of shelter sites where few of quality are available may enable better resolution of habitat preferences. Over three years, we observed the Brush‐tailed Phascogale at 17 sites, whereas the Sugar Glider was observed at 39 sites. We tested four broad hypotheses (H1–H4) relating to habitat that may influence occupancy by these species. There was no influence of hollow (cavity) abundance (H1) on either species suggesting our nest boxes had satisfied their shelter requirements. There was no influence of habitat structure (canopy and tree proximity) (H2) immediately around the nest box trees. We found no influence of distance to the forest edge (H3). Variables at and away from the nest box site that appear to reflect foraging substrates (H4) were influential on the Brush‐tailed Phascogale. Sugar Glider occupancy was only influenced by a single variable at the nest box site. The lack of influence of any other variables is consistent with the very high occupancy observed, suggesting most of the forest habitat is suitable when shelter sites are available. We found no evidence that the Sugar Glider reduced site use by the Brush‐tailed Phascogale.  相似文献   
82.
Larval recruitment is essential for sustaining coral communities and a fundamental tool in some interventions for reef restoration. To improve larval supply and post‐settlement survival in sexually assisted coral restoration efforts, an integrated in situ collector system, the larval cradle, was designed to collect spawned gametes then culture the resulting larvae until settled on artificial substrates. The final design of the larval cradle was cylindrical, a nylon mesh structure with a volume of 9 m3, suspended in the sea and extending vertically toward the seabed. We found three key design features that improved the efficiency of the apparatus: (1) an open area of sea surface and mesh size of less than 100 μm produced high fertilization and optimal survival (>90%), (2) a special skirt‐shaped net (3 m in diameter) with a connection hose for attaching the cradle to collect bundles from many adult colonies over a wide area and at various depths, and (3) adding short square tube pieces, called square hollow sections, as a substrate for enhancing larval settlement and survival, to a larval cradle at 4 days after spawning was optimal for uniform settlement. This system allowed not only the collection of several million eggs, but also subsequent production of several thousand settled juvenile corals, without land facilities. Our design achieved several hundred times higher survival for early life stages of Acropora tenuis compared to nature.  相似文献   
83.
Thermal‐stress events that cause coral bleaching and mortality have recently increased in frequency and severity. Yet few studies have explored conditions that moderate coral bleaching. Given that high light and high ocean temperature together cause coral bleaching, we explore whether corals at turbid localities, with reduced light, are less likely to bleach during thermal‐stress events than corals at other localities. We analyzed coral bleaching, temperature, and turbidity data from 3,694 sites worldwide with a Bayesian model and found that Kd490, a measurement positively related to turbidity, between 0.080 and 0.127 reduced coral bleaching during thermal‐stress events. Approximately 12% of the world's reefs exist within this “moderating turbidity” range, and 30% of reefs that have moderating turbidity are in the Coral Triangle. We suggest that these turbid nearshore environments may provide some refuge through climate change, but these reefs will need high conservation status to sustain them close to dense human populations.  相似文献   
84.
Enhancing the resilience of corals to rising temperatures is now a matter of urgency, leading to growing efforts to explore the use of heat tolerant symbiont species to improve their thermal resilience. The notion that adaptive traits can be retained by transferring the symbionts alone, however, challenges the holobiont concept, a fundamental paradigm in coral research. Holobiont traits are products of a specific community (holobiont) and all its co‐evolutionary and local adaptations, which might limit the retention or transference of holobiont traits by exchanging only one partner. Here we evaluate how interchanging partners affect the short‐ and long‐term performance of holobionts under heat stress using clonal lineages of the cnidarian model system Aiptasia (host and Symbiodiniaceae strains) originating from distinct thermal environments. Our results show that holobionts from more thermally variable environments have higher plasticity to heat stress, but this resilience could not be transferred to other host genotypes through the exchange of symbionts. Importantly, our findings highlight the role of the host in determining holobiont productivity in response to thermal stress and indicate that local adaptations of holobionts will likely limit the efficacy of interchanging unfamiliar compartments to enhance thermal tolerance.  相似文献   
85.
Improving coral reef conservation requires heightened understanding of the mechanisms by which coral cope with changing environmental conditions to maintain optimal health. We used a long‐term (10 month) in situ experiment with two phylogenetically diverse scleractinians (Acropora palmata and Porites porites) to test how coral–symbiotic algal interactions changed under real‐world conditions that were a priori expected to be beneficial (fish‐mediated nutrients) and to be harmful, but non‐lethal, for coral (fish + anthropogenic nutrients). Analyzing nine response variables of nutrient stoichiometry and stable isotopes per coral fragment, we found that nutrients from fish positively affected coral growth, and moderate doses of anthropogenic nutrients had no additional effects. While growing, coral maintained homeostasis in their nutrient pools, showing tolerance to the different nutrient regimes. Nonetheless, structural equation models revealed more nuanced relationships, showing that anthropogenic nutrients reduced the diversity of coral–symbiotic algal interactions and caused nutrient and carbon flow to be dominated by the symbiont. Our findings show that nutrient and carbon pathways are fundamentally “rewired” under anthropogenic nutrient regimes in ways that could increase corals’ susceptibility to further stressors. We hypothesize that our experiment captured coral in a previously unrecognized transition state between mutualism and antagonism. These findings highlight a notable parallel between how anthropogenic nutrients promote symbiont dominance with the holobiont, and how they promote macroalgal dominance at the coral reef scale. Our findings suggest more realistic experimental conditions, including studies across gradients of anthropogenic nutrient enrichment as well as the incorporation of varied nutrient and energy pathways, may facilitate conservation efforts to mitigate coral loss.  相似文献   
86.
Biological feedbacks generated through patterns of disturbance are vital for sustaining ecosystem states. Recent ocean warming and thermal anomalies have caused pantropical episodes of coral bleaching, which has led to widespread coral mortality and a range of subsequent effects on coral reef communities. Although the response of many reef‐associated fishes to major disturbance events on coral reefs is negative (e.g., reduced abundance and condition), parrotfishes show strong feedbacks after disturbance to living reef structure manifesting as increases in abundance. However, the mechanisms underlying this response are poorly understood. Using biochronological reconstructions of annual otolith (ear stone) growth from two ocean basins, we tested whether parrotfish growth was enhanced following bleaching‐related coral mortality, thus providing an organismal mechanism for demographic changes in populations. Both major feeding guilds of parrotfishes (scrapers and excavators) exhibited enhanced growth of individuals after bleaching that was decoupled from expected thermal performance, a pattern that was not evident in other reef fish taxa from the same environment. These results provide evidence for a more nuanced ecological feedback system—one where disturbance plays a key role in mediating parrotfish–benthos interactions. By influencing the biology of assemblages, disturbance can thereby stimulate change in parrotfish grazing intensity and ultimately reef geomorphology over time. This feedback cycle operated historically at within‐reef scales; however, our results demonstrate that the scale, magnitude, and severity of recent thermal events are entraining the biological responses of disparate communities to respond in synchrony. This may fundamentally alter feedbacks in the relationships between parrotfishes and reef systems.  相似文献   
87.
Climate change is redistributing marine and terrestrial species globally. Life‐history traits mediate the ability of species to cope with novel environmental conditions, and can be used to gauge the potential redistribution of taxa facing the challenges of a changing climate. However, it is unclear whether the same traits are important across different stages of range shifts (arrival, population increase, persistence). To test which life‐history traits most mediate the process of range extension, we used a 16‐year dataset of 35 range‐extending coral‐reef fish species and quantified the importance of various traits on the arrival time (earliness) and degree of persistence (prevalence and patchiness) at higher latitudes. We show that traits predisposing species to shift their range more rapidly (large body size, broad latitudinal range, long dispersal duration) did not drive the early stages of redistribution. Instead, we found that as diet breadth increased, the initial arrival and establishment (prevalence and patchiness) of climate migrant species in temperate locations occurred earlier. While the initial incursion of range‐shifting species depends on traits associated with dispersal potential, subsequent establishment hinges more on a species’ ability to exploit novel food resources locally. These results highlight that generalist species that can best adapt to novel food sources might be most successful in a future ocean.  相似文献   
88.
89.
Genetic covariance between two traits generates correlated responses to selection, and may either enhance or constrain adaptation. Silene latifolia exhibits potentially constraining genetic covariance between specific leaf area (SLA) and flower number in males. Flower number is likely to increase via fecundity selection but the correlated increase in SLA increases mortality, and SLA is under selection to decrease in dry habitats. We selected on trait combinations in two selection lines for four generations to test whether genetic covariance could be reduced without significantly altering trait means. In one selection line, the genetic covariance changed sign and eigenstructure changed significantly, while in the other selection line eigenstructure remained similar to the control line. Changes in genetic variance–covariance structure are therefore possible without the introduction of new alleles, and the responses we observed suggest that founder effects and changes in frequency of alleles of major effect may be acting to produce the changes.  相似文献   
90.
Coral reef fish larvae are tiny, exceedingly numerous, and hard to track. They are also highly capable, equipped with swimming and sensory abilities that may influence their dispersal trajectories. Despite the importance of larval input to the dynamics of a population, we remain reliant on indirect insights to the processes influencing larval behavior and transport. Here, we used genetic data (300 independent single nucleotide polymorphisms) derived from a light trap sample of a single recruitment event of Dascyllus abudafur in the Red Sea (N = 168 settlers). We analyzed the genetic composition of the larvae and assessed whether kinship among these was significantly different from random as evidence for cohesive dispersal during the larval phase. We used Monte Carlo simulations of similar‐sized recruitment cohorts to compare the expected kinship composition relative to our empirical data. The high number of siblings within the empirical cohort strongly suggests cohesive dispersal among larvae. This work highlights the utility of kinship analysis as a means of inferring dynamics during the pelagic larval phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号