首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   76篇
  国内免费   9篇
  835篇
  2023年   11篇
  2022年   14篇
  2021年   23篇
  2020年   31篇
  2019年   39篇
  2018年   29篇
  2017年   36篇
  2016年   21篇
  2015年   32篇
  2014年   43篇
  2013年   74篇
  2012年   21篇
  2011年   26篇
  2010年   28篇
  2009年   31篇
  2008年   23篇
  2007年   36篇
  2006年   39篇
  2005年   27篇
  2004年   26篇
  2003年   21篇
  2002年   28篇
  2001年   16篇
  2000年   12篇
  1999年   13篇
  1998年   17篇
  1997年   7篇
  1996年   11篇
  1995年   11篇
  1994年   7篇
  1993年   10篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   9篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   8篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
排序方式: 共有835条查询结果,搜索用时 15 毫秒
41.
Cartilage exhibits nonlinear viscoelastic behaviour. Various models have been proposed to explain cartilage stress relaxation, but it is unclear whether explicit modelling of fluid flow in unconfined compression is needed. This study compared Fung's quasi-linear viscoelastic (QLV) model with a stretched-exponential model of cartilage stress relaxation and examined each of these models both alone and in combination with a fluid-flow model in unconfined compression. Cartilage explants were harvested from bovine calf patellofemoral joints and equilibrated in tissue culture for 5 days before stress-relaxation testing in unconfined compression at 5% nominal strain. The stretched exponential models fit as well as the QLV models. Furthermore, the average stretched exponential relaxation time determined by this model lies within the range of experimentally measured relaxation times for extracted proteoglycan aggregates, consistent with the hypothesis that the stretched exponential model represents polymeric mechanisms of cartilage viscoelasticity.  相似文献   
42.
43.
44.
45.
Osteoarthritis (OA) is a chronic disease affecting the cartilage of over 15% of Canadians. Synovial fluid mesenchymal progenitor cells (sfMPCs) are present in joints and are thought to contribute to healing. OA sfMPCs have a greater proliferative ability but decreased chondrogenic potential. However, little is known about the factors influencing/regulating the differences between normal and OA sfMPCs. Recently, our lab has shown that sfMPC chondrogenic differentiation in vitro is favorably biased toward a similar osmotic environment as they experience in vivo. The current study now examines the expression and functionality of a variety of ion channels in sfMPCs derived from normal individuals and early OA patients. Results indicated that there is differential ion channel regulation at the functional level and expression level in early OA sfMPCs. All ion channels were upregulated in early OA compared to normal sfMPCs with the exception of KCNMA1 at the mRNA level. At the protein level, TRPV4 was over expressed in early OA sfMPCs, while KCNJ12 and KCNMA1 were unchanged between normal and early OA sfMPCs. At the functional level, the inward rectifying potassium channel was under expressed in early OA sfMPCs, however the membrane potential was unchanged between normal and early OA sfMPCs. In the synovial environment itself, a number of differences in ion concentration between normal and early OA synovial fluid were observed. These findings suggest that normal and OA progenitor cells demonstrate functional differences in how they interact with the synovial ion environment.  相似文献   
46.
目的:探讨血清胆红素、人类软骨糖蛋白-39(YKL-40)、高迁移率族蛋白1(HMGB-1)对糖尿病合并冠心病患者的临床意义方法:选择2017年1月至2018年12月我院接诊的190例2型糖尿病患者,根据是否合并冠心病分为单纯糖尿病组121例和糖尿病合并冠心病组69例,并选择同期在我院接受体检的100例健康者作为对照组。比较三组临床生化指标、血清胆红素、YKL-40、HMGB-1及不同病变支数、不同病变程度糖尿病合并冠心病组血清胆红素、YKL-40、HMGB-1的表达。结果:三组空腹血糖(FBG)、糖化血红蛋白(HbA1c)、三酰甘油(TG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、血清胆红素、YKL-40、HMGB-1比较差异均有统计学意义(P0.05);不同病变支数、病变程度糖尿病合并冠心病患者血清胆红素、YKL-40、HMGB-1比较差异均有统计学意义(P0.05);经两两Pearson线性相关性分析结果显示,血清胆红素和Gensini评分呈负相关(r=-0.812,P0.01),YKL-40、HMGB-和Gensini评分正相关(r=0.873、0.801,P0.01)。结论:在糖尿病合并冠心病患者中,血清胆红素的表达明显降低,YKL-40、HMGB-1明显升高,且随着冠脉病变程度的加重变化更明显,本研究也为后期血清胆红素、YKL-40、HMGB-1在该病的早期诊断、预防、治疗效果评价等方面提供了依据  相似文献   
47.
The endoplasmic reticulum (ER) membrane protein complex (EMC) is essential for the insertion of a wide variety of transmembrane proteins into the plasma membrane across cell types. Each EMC is composed of Emc1-7, Emc10, and either Emc8 or Emc9. Recent human genetics studies have implicated variants in EMC genes as the basis for a group of human congenital diseases. The patient phenotypes are varied but appear to affect a subset of tissues more prominently than others. Namely, craniofacial development seems to be commonly affected. We previously developed an array of assays in Xenopus tropicalis to assess the effects of emc1 depletion on the neural crest, craniofacial cartilage, and neuromuscular function. We sought to extend this approach to additional EMC components identified in patients with congenital malformations. Through this approach, we determine that EMC9 and EMC10 are important for neural crest development and the development of craniofacial structures. The phenotypes observed in patients and our Xenopus model phenotypes similar to EMC1 loss of function likely due to a similar mechanism of dysfunction in transmembrane protein topogenesis.  相似文献   
48.
Bioprinting as a promising but unexplored approach for cartilage tissue engineering has the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the targeted 3D locations with simultaneous polymerization. This study tested feasibility of using bioprinting for cartilage engineering and examined the influence of cell density, growth, and differentiation factors. Human articular chondrocytes were printed at various densities, stimulated transiently with growth factors and subsequently with chondrogenic factors. Samples were cultured for up to 4 weeks to evaluate cell proliferation and viability, mechanical properties, mass swelling ratio, water content, gene expression, ECM production, DNA content, and histology. Bioprinted samples treated with FGF-2/TGF-β1 had the best chondrogenic properties among all groups apparently due to synergistic stimulation of cell proliferation and chondrogenic phenotype. ECM production per chondrocyte in low cell density was much higher than that in high cell seeding density. This finding was also verified by mechanical testing and histology. In conclusion, cell seeding density that is feasible for bioprinting also appears optimal for human neocartilage formation when combined with appropriate growth and differentiation factors.  相似文献   
49.
50.
This study is carried out to investigate the role of microRNA-26a (miR-26a) in cartilage injury and chondrocyte proliferation and apoptosis in rats with rheumatoid arthritis (RA) by regulating expression of CTGF. A rat model of RA induced by type II collagen was established. The rats were assigned into normal, RA, RA + mimics negative control (NC), and RA + miR-26a mimics groups, and the cells were classified into blank, mimics NC, and miR-26a mimics groups. The degree of secondary joint swelling and arthritis index, expression of miR-26a, pathological changes, proliferation and apoptosis of chondrocytes, and expression of CTGF, interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α, Bax, and Bcl-2 were also determined through a series of experiments. The targeting relationship between miR-26a and CTGF was verified. Initially, downregulated miR-26a was found in cartilage tissues and inflammatory articular chondrocytes of RA rats. In addition, CTGF was determined as a direct target gene of miR-26a, and upregulation of miR-26a inhibited CTGF expression in cartilage tissues of RA rats. Furthermore, upregulation of miR-26a reduced swelling and inflammation of joints, inhibited cartilage damage, apoptosis of chondrocytes, inflammatory injury, promotes proliferation, and inhibited apoptosis of inflammatory articular chondrocytes, which may be correlated with the targeting inhibition of CTGF expression. Collectively, the results demonstrate that upregulating the expression of miR-26a could attenuate cartilage injury, stimulate the proliferation, and inhibit apoptosis of chondrocytes in RA rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号