首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   1篇
  国内免费   6篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2019年   3篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   14篇
  2012年   4篇
  2011年   1篇
  2010年   5篇
  2009年   6篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
61.
Tomato plants were cultivated in greenhouse and water solutions of arsenite (As(III)), arsenate (As(V)), methylarsonic acid (MA) and dimethylarsinic acid (DMA) were applied individually into cultivation substrate at two As levels, 5 and 15 mg kg−1 of the substrate. Comparing the availability of arsenic compounds increased in order arsenite = arsenate < MA < DMA where the arsenic contents in plants decreased during vegetation period. Within a single plant, the highest arsenic concentration was found in roots followed in decreasing order by leaves, stems, and fruits regardless of arsenic compound applied. Arsenic toxicity symptoms reflected in suppressed growth of plants and a lower number and size of fruits were most significant with DMA treatment. However, the highest accumulation of arsenic by plants growing in the soil containing DMA was caused by higher mobility of this compound in the soil due to its lower sorption affinity. Our results confirmed substantial role of transformation processes of arsenic compounds in soil in uptake and accumulation of arsenic by plants.  相似文献   
62.
Introduction  Resistance to apoptosis is a prominent feature of melanoma. Pharmacological concentration of arsenic in combination with a widely known oxidant, menadione was explored in this study to synergistically sensitize malignant melanoma cells to apoptosis. The molecular mechanism of apoptosis and the signaling-pathways involved were thoroughly investigated. Materials methods and results  Menadione synergized NaAsO2 to significantly increase ROS generation and facilitate the major apoptotic signaling events: alteration of mitochondrial membrane potential, cytochrome c release and anti-apoptotic protein Bcl-2 down-regulation and subsequent activation of caspase-9 and caspase-3 followed by poly-ADP-ribose polymerase-1 cleavage. Antioxidant N-acetyl-l-cysteine antagonized these events. Investigation of the signaling-pathway revealed significant suppression of AP-1 activity but not NF-κB upon NaAsO2 and menadione application. An increase in p38 phosphorylation and p53 protein expression did also dictate the apoptotic response. Suppression of p38 activation with SB203580 and inhibition of p53 expression by siRNA attenuated apoptosis. Transfection of p53, in p53 null HCT cells augmented the apoptotic events. Moreover, the treatment also led to tumor size reduction in BALB/c mice developed by intra-dermal B16 mouse melanoma cell injection; however, it had no detectable pro-proliferative or pro-apoptotic effect on non-tumor keratinocytes, normal fibroblasts or PBMC. Conclusion  This study thus provides an insight into innovative mechanisms of melanoma sensitization, a proper cure against which is still elusive. Taken together, our data also provides the first evidence of arsenic activity accentuation by menadione through modulation of specific signaling-pathways.  相似文献   
63.
In this study, we examined the effect of concurrent low concentrations of sodium arsenite and mild heat shock temperatures on hsp30 and hsp70 gene expression in Xenopus A6 kidney epithelial cells. RNA blot hybridization and immunoblot analysis revealed that exposure of A6 cells to 1–10 µM sodium arsenite at a mild heat shock temperature of 30 °C enhanced hsp30 and hsp70 gene expression to a much greater extent than found with either stress individually. In cells treated simultaneously with 10 µM sodium arsenite and different heat shock temperatures, enhanced accumulation of HSP30 and HSP70 protein was first detected at 26 °C with larger responses at 28 and 30 °C. HSF1 activity was involved in combined stress-induced hsp gene expression since the HSF1 activation inhibitor, KNK437, inhibited HSP30 and HSP70 accumulation. Immunocytochemical analysis revealed that HSP30 was present in a granular pattern primarily in the cytoplasm in cells treated simultaneously with both stresses. Finally, prior exposure of A6 cells to concurrent sodium arsenite (10 µM) and heat shock (30 °C) treatment conferred thermotolerance since it protected them against a subsequent thermal challenge (37 °C). Acquired thermotolerance was not observed with cells treated with the two mild stresses individually.  相似文献   
64.
Stress granules (SGs) are cytoplasmic bodies wherein translationally silenced mRNAs are recruited for triage in response to environmental stress. We report that Drosophila cells form SGs in response to arsenite and heat shock. Drosophila SGs, like mammalian SGs, are distinct from but adjacent to processing bodies (PBs, sites of mRNA silencing and decay), require polysome disassembly, and are in dynamic equilibrium with polysomes. We further examine the role of the two Drosophila eIF2α kinases, PEK and GCN2, in regulating SG formation in response to heat and arsenite stress. While arsenite-induced SGs are dependent upon eIF2α phosphorylation, primarily via PEK, heat-induced SGs are phospho-eIF2α-independent. In contrast, heat-induced SGs require eIF2α phosphorylation in mammalian cells, as non-phosphorylatable eIF2α Ser51Ala mutant murine embryonic fibroblasts do not form SGs even after severe heat shock. These results suggest that mammals evolved alternative mechanisms for dealing with thermal stress.  相似文献   
65.
66.
67.
68.
69.
The present study was aimed at determining the oxidative damage caused by sodium arsenite in 3T3 fibroblast cells and the possible protective role of curcumin (Cur) against sodium arsenite toxicity. Embryonic fibroblast cells were exposed to sodium arsenite (0.01, 0.1, 1, and 10 μM) in the presence and absence of Cur (2.5 μM) for 24 hours. Cell viability, cytotoxicity, lipid peroxidation, hydroxyl radical, hydrogen peroxide, antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione‐S‐transferase) and expression levels of antioxidant genes (superoxide dismutase, catalase, and glutathione peroxidase) were measured in embryonic fibroblast cells. Results demonstrated that sodium arsenite directly affects antioxidant enzymes and genes in 3T3 embryonic fibroblast cells and induces oxidative damage by increasing the amount of hydrogen peroxide, hydroxyl radical, and lipid peroxidation in the cell. Furthermore, the study indicated that Cur might be a potential ameliorative antioxidant to protect the fibroblast cell toxicity induced by sodium arsenite.  相似文献   
70.
Rapid reduction of arsenate in the medium mediated by plant roots   总被引:9,自引:1,他引:8  
Microbes detoxify arsenate by reduction and efflux of arsenite. Plants have a high capacity to reduce arsenate, but arsenic efflux has not been reported. Tomato (Lycopersicon esculentum) and rice (Oryza sativa) were grown hydroponically and supplied with 10 microm arsenate or arsenite, with or without phosphate, for 1-3 d. The chemical species of As in nutrient solutions, roots and xylem sap were monitored, roles of microbes and root exudates in As transformation were investigated and efflux of As species from tomato roots was determined. Arsenite remained stable in the nutrient solution, whereas arsenate was rapidly reduced to arsenite. Microbes and root exudates contributed little to the reduction of external arsenate. Arsenite was the predominant species in roots and xylem sap. Phosphate inhibited arsenate uptake and the appearance of arsenite in the nutrient solution, but the reduction was near complete in 24 h in both -P- and +P-treated tomato. Phosphate had a greater effect in rice than tomato. Efflux of both arsenite and arsenate was observed; the former was inhibited and the latter enhanced by the metabolic inhibitor carbonylcyanide m-chlorophenylhydrazone. Tomato and rice roots rapidly reduce arsenate to arsenite, some of which is actively effluxed to the medium. The study reveals a new aspect of As metabolism in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号