首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7867篇
  免费   694篇
  国内免费   440篇
  2024年   15篇
  2023年   133篇
  2022年   100篇
  2021年   286篇
  2020年   387篇
  2019年   655篇
  2018年   350篇
  2017年   191篇
  2016年   198篇
  2015年   283篇
  2014年   409篇
  2013年   790篇
  2012年   418篇
  2011年   441篇
  2010年   318篇
  2009年   303篇
  2008年   354篇
  2007年   335篇
  2006年   422篇
  2005年   457篇
  2004年   357篇
  2003年   373篇
  2002年   412篇
  2001年   344篇
  2000年   188篇
  1999年   180篇
  1998年   134篇
  1997年   73篇
  1996年   44篇
  1995年   24篇
  1994年   13篇
  1993年   6篇
  1992年   5篇
  1985年   3篇
排序方式: 共有9001条查询结果,搜索用时 328 毫秒
151.
152.
Survivin is a multitasking protein that can inhibit cell death and that is essential for mitosis. Due to these prosurvival activities and the correlation of its expression with tumor resistance to conventional cancer treatments, survivin has received much attention as a potential oncotherapeutic target. Nevertheless, many questions regarding its exact role at the molecular level remain to be elucidated. In this study we ask whether the extreme C- and NH2 termini of survivin are required for it to carry out its cytoprotective and mitotic duties. When assayed for their ability to act as a cytoprotectant, both survivin1–120 and survivin11–142 were able to protect cells against TRAIL-mediated apoptosis, but when challenged with irradiation cells expressing survivin11–142 had no survival advantage. During mitosis, however, removing the NH2 terminal 10 amino acids (survivin11–142) had no apparent effect but truncating 22 amino acids from the C-terminus (survivin1–120) prevented survivin from transferring to the midzone microtubules during anaphase. Collectively the data herein presented suggest that the C-terminus is required for cell division, and that the NH2 terminus is dispensable for apoptosis and mitosis but required for protection from irradiation.  相似文献   
153.
Loss of p53 function is a common feature of human cancers and it is required for differentiated tumor cell maintenance; however, it is not known whether sustained inactivation of the p53 pathway is needed for cancer stem cell persistence. Chronic myeloid leukemia (CML) is caused by a chromosome translocation that generates the BCRABL oncogene encoding a constitutively active protein tyrosine kinase. The disease originates in a hematopoietic stem cell and is maintained by leukemic stem cells (LSCs). Treatment with specific tyrosine kinase inhibitors does not eliminate LSCs because they do not depend on the oncogene for survival. We have combined a switchable p53 knock-in mouse model, p53KI/KI, with the well-characterized Sca1-BCRABLp210 CML transgenic model, to show that transient restoration of p53 slows disease progression and significantly extends the survival of leukemic animals, being the mechanism responsible for this effect, apoptotic death of primitive leukemia cells. In agreement with these in vivo findings, in vitro assays show that restoring p53 reduces hematopoietic colony formation by cells of leukemic animals. These results suggest that reestablishing p53 function may be a therapeutic strategy for the eradication of leukemic stem cells and to prevent disease progression.  相似文献   
154.
Kaposi sarcoma (KS) tumors often contain a wild-type p53. However, the function of this tumor suppressor in KS tumor cells is inhibited by both MDM2 and latent nuclear antigen (LANA) of Kaposi sarcoma-associated herpes virus (KSHV). Here, we report that MDM2 antagonist Nutlin-3 efficiently reactivates p53 in telomerase-immortalized human umbilical vein endothelial cells (TIVE) that had been malignantly transformed by KSHV as well as in KS tumor cells. Reactivation of p53 results in a G1 cell cycle arrest, leading to inhibition of proliferation and apoptosis. Nutlin-3 inhibits the growth of “KS-like” tumors resulting from xenografted TIVE-KSHV cells in nude mice. In addition, Nutlin-3 strongly inhibits expression of the pro-angiogenic and pro-inflammatory cytokine angiopoietin-2 (Ang-2). It also disrupts viral latency by inducing expression of KSHV lytic genes. These results suggest that Nutlin-3 might serve as a novel therapy for KS.  相似文献   
155.
156.
157.
158.
159.
TRAIL, a putative anticancer cytokine, induces extrinsic cell death by activating the caspase cascade directly (Type I cells) via the death-inducing signaling complex (DISC) or indirectly (Type II cells) by caspase-8 cleavage of Bid and activation of the mitochondrial cell death pathway. Cancer cells are characterized by their dependence on aerobic glycolysis, which, although inefficient in terms of ATP production, facilitates tumor metabolism. Our studies show that TRAIL-induced cell death is significantly affected by the metabolic status of the cell. Inhibiting glycolysis with 2-deoxyglucose potentiates TRAIL-induced cell death, whereas glucose deprivation can paradoxically inhibit apoptosis. These conflicting responses to glycolysis inhibition are modulated by the balance between the Akt and AMPK pathways and their subsequent downstream regulation of mTORC1. This results in marked changes in protein translation, in which the equilibrium between anti- and pro-apoptotic Bcl-2 family member proteins is decided by their individual degradation rates. This regulates the mitochondrial cell death pathway and alters its sensitivity not only to TRAIL, but to ABT-737, a Bcl-2 inhibitor. Taken together, our studies show that the sensitivity of cancer cells to apoptosis can be modulated by targeting their unique metabolism in order to enhance sensitivity to apoptotic agents.  相似文献   
160.
Following microbial pathogen invasion, the human immune system of activated phagocytes generates and releases the potent oxidant hypochlorous acid (HOCl), which contributes to the killing of menacing microorganisms. Though tightly controlled, HOCl generation by the myeloperoxidase-hydrogen peroxide-chloride system of neutrophils/monocytes may occur in excess and lead to tissue damage. It is thus of marked importance to delineate the molecular pathways underlying HOCl cytotoxicity in both microbial and human cells. Here, we show that HOCl induces the generation of reactive oxygen species (ROS), apoptotic cell death and the formation of specific HOCl-modified epitopes in the budding yeast Saccharomyces cerevisiae. Interestingly, HOCl cytotoxicity can be prevented by treatment with ROS scavengers, suggesting oxidative stress to mediate the lethal effect. The executing pathway involves the pro-apoptotic protease Kex1p, since its absence diminishes HOCl-induced production of ROS, apoptosis and protein modification. By characterizing HOCl-induced cell death in yeast and identifying a corresponding central executor, these results pave the way for the use of Saccharomyces cerevisiae in HOCl research, not least given that it combines both being a microorganism as well as a model for programmed cell death in higher eukaryotes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号