首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   48篇
  国内免费   3篇
  2024年   6篇
  2023年   1篇
  2020年   8篇
  2019年   14篇
  2018年   17篇
  2017年   12篇
  2016年   16篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   7篇
  2011年   8篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2003年   1篇
  1997年   2篇
  1996年   2篇
  1985年   1篇
  1980年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
81.
Identifying suitable electrode materials for sodium‐ion and potassium‐ion storage holds the key to the development of earth‐abundant energy‐storage technologies. This study reports an anode material based on self‐assembled hierarchical spheroid‐like KTi2(PO4)3@C nanocomposites synthesized via an electrospray method. Such an architecture synergistically combines the advantages of the conductive carbon network and allows sufficient space for the infiltration of the electrolyte from the porous structure, leading to an impressive electrochemical performance, as reflected by the high reversible capacity (283.7 mA h g?1 for Na‐ion batteries; 292.7 mA h g?1 for K‐ion batteries) and superior rate capability (136.1 mA h g?1 at 10 A g?1 for Na‐ion batteries; 133.1 mA h g?1 at 1 A g?1 for K‐ion batteries) of the resulting material. Moreover, the different ion diffusion behaviors in the two systems are revealed to account for the difference in rate performance. These findings suggest that KTi2(PO4)3@C is a promising candidate as an anode material for sodium‐ion and potassium‐ion batteries. In particular, the present synthetic approach could be extended to other functional electrode materials for energy‐storage materials.  相似文献   
82.
Energy‐storage technology is moving beyond lithium batteries to sodium as a result of its high abundance and low cost. However, this sensible transition requires the discovery of high‐rate and long‐lifespan anode materials, which remains a significant challenge. Here, the facile synthesis of an amorphous Sn2P2O7/reduced graphene oxide nanocomposite and its sodium storage performance between 0.01 and 3.0 V are reported for the first time. This hybrid electrode delivers a high specific capacity of 480 mA h g?1 at a current density of 50 mA g?1 and superior rate performance of 250 and 165 mA h g?1 at 2 and 10 A g?1, respectively. Strikingly, this anode can sustain 15 000 cycles while retaining over 70% of the initial capacity. Quantitative kinetic analysis reveals that the sodium storage is governed by pseudocapacitance, particularly at high current rates. A full cell with sodium super ionic conductor (NASICON)‐structured Na3V2(PO4)2F3 and Na3V2(PO4)3 as cathodes exhibits a high energy density of over 140 W h kg?1 and a power density of nearly 9000 W kg?1 as well as stability over 1000 cycles. This exceptional performance suggests that the present system is a promising power source for promoting the substantial use of low‐cost energy storage systems.  相似文献   
83.
The current Na+ storage performance of carbon‐based materials is still hindered by the sluggish Na+ ion transfer kinetics and low capacity. Graphene and its derivatives have been widely investigated as electrode materials in energy storage and conversion systems. However, as anode materials for sodium‐ion batteries (SIBs), the severe π–π restacking of graphene sheets usually results in compact structure with a small interlayer distance and a long ion transfer distance, thus leading to low capacity and poor rate capability. Herein, partially reduced holey graphene oxide is prepared by simple H2O2 treatment and subsequent low temperature reduction of graphene oxide, leading to large interlayer distance (0.434 nm), fast ion transport, and larger Na+ storage space. The partially remaining oxygenous groups can also contribute to the capacity by redox reaction. As anode material for SIBs, the optimized electrode delivers high reversible capacity, high rate capability (365 and 131 mAh g?1 at 0.1 and 10 A g?1, respectively), and good cycling performance (163 mAh g?1 after 3000 cycles at a current density of 2 A g?1), which is among the best reported performances for carbon‐based SIB anodes.  相似文献   
84.
Niobates with shear ReO3 crystal structures are remarkably promising anode materials for Li+ batteries due to their large capacities, inherent safety, and high cycling stability. However, they generally suffer from limited rate capabilities rooted in their insufficient electronic and Li+ conductivities. Here, micrometer‐sized copper niobate (Cu2Nb34O87) bulk as a new anode material having a high electronic conductivity of 2.1 × 10?5 S cm?1 and an impressive average Li+ diffusion coefficient of ≈3.5 × 10?13 cm2 s?1 is exploited, which synergistically leads to an excellent rate capability (184 mAh g?1 at 10 C) while remaining a large reversible capacity and superior cycling stability. Moreover, the fast Li+ transport pathways of grain boundary (micrometer scale) → lattice deformation area (nanometer scale) → (010) crystallographic plane (angstrom scale) are demonstrated in Cu2Nb34O87. Therefore, these results could pave the way for practical application of Cu2Nb34O87 in high‐performance Li+ batteries.  相似文献   
85.
Lithium (Li) metal has been strongly regarded as the ultimate anode option for next-generation high-energy-density batteries. Nevertheless, the insufficient Coulombic efficiency induced by the extensive active Li loss largely hinders the practical operation of Li metal batteries under wide temperature range. Herein, the temperature-mediated dynamic growth of inactive Li from −20 to 60°C via titration gas chromatograph measurements is quantitatively decoupled. Combined X-ray photoelectronic spectroscopy, cryo-transmission electronic microscopy, and scanning electronic microscopy methods depicted that both solid electrolyte interphase (SEI) characteristics and Li deposition compactness can be profoundly manipulated by working temperature. The elevation of temperature is found to fundamentally aggravate the parasitic reactions and deteriorate the spatial uniformity of SEI, yet promote the lateral growth of Li by kinetic reason. The opposite effects of temperature on SEI properties and Li deposition compactness can properly explain the intricate temperature-dependent growth rates of SEI-Li+ and dead Li0 capacity loss observed under titration gas chromatograph measurements. Design implications towards more stable Li metal anodes with higher reversibility can thus be yielded.  相似文献   
86.
Structural/compositional characteristics at the anode/electrolyte interface are of paramount importance for the practical performance of lithium ion batteries, including cyclic stability, rate capacity, and operational safety. The anode‐electrolyte interface with traditional separator technology is featured with inevitable phase discontinuity and fails to support the stable operation of lithium ion batteries based on large‐capacity anodes with structural change in charges/discharges, such as transition metal oxide anodes. In this work, an anode/electrolyte framework based on an oxide anode and an active‐oxide‐incorporated separator is proposed for the first time and investigated for lithium ion batteries. The architecture builds a robust anode‐separator interface in LIBs, shortens Li+ diffusion path, accelerates electron transport, and mitigates the volume change of the oxide anode in electrochemical reactions. Remarkably, 4 wt% CuO addition in the separator leads to a 17% enhancement in the overall capacity of a battery with a CuO anode. The battery delivers an unparalleled record reversible capacity of 637.2 mAh g?1 with a 99% capacity retention after 100 charge/discharge cycles at 0.5 C. The high performance are attributed to the robust anode‐separator interface, which gives rise to enhanced interaction between the oxide anode and the same‐oxide‐incorporated composite in the separator.  相似文献   
87.
Focussing primarily on thermal load capacity, we describe the performance of a novel fixed anode CT (FACT) compared with a 100 kW reference CT. Being a fixed system, FACT has no focal spot blurring of the X-ray source during projection. Monte Carlo and finite element methods were used to determine the fluence proportional to thermal capacity. Studies of repeated short-time exposures showed that FACT could operate in pulsed mode for an unlimited period. A virtual model for FACT was constructed to analyse various temporal sequences for the X-ray source ring, representing a circular array of 1160 fixed anodes in the gantry. Assuming similar detector properties at a very small integration time, image quality was investigated using an image reconstruction library. Our model showed that approximately 60 gantry rounds per second, i.e. 60 sequential targetings of the 1160 anodes per second, were required to achieve a performance level equivalent to that of the reference CT (relative performance, RP = 1) at equivalent image quality. The optimal projection duration in each direction was about 10 μs. With a beam pause of 1 μs between projections, 78.4 gantry rounds per second with consecutive source activity were thermally possible at a given thermal focal spot. The settings allowed for a 1.3-fold (RP = 1.3) shorter scan time than conventional CT while maintaining radiation exposure and image quality. Based on the high number of rounds, FACT supports a high image frame rate at low doses, which would be beneficial in a wide range of diagnostic and technical applications.  相似文献   
88.
89.
Copper is used as current collector in rechargeable ion batteries due to its outstanding electronic conductivity and low cost. The intrinsic inactivity of copper, however, makes it a poor candidate for an electrode material without further structural modification. To fully utilize its high electronic conductivity, herein, the incorporation of heterogeneous phosphorus combined with building a unique 3D hollow structure is proposed. The as‐prepared copper phosphide hollow nanocubes deliver a stable capacity of 325 mAh·g?1 at 50 mA·g?1 and fast charging and discharging via pseudocapacitance behavior. The outstanding electrochemical performance is attributed to the synergetic effects of high electronic conductivity of copper and the high sodium storage capability of phosphorus. In addition, this facile synthesis method is also easily scaled up for practical applications. Thus, copper phosphide is a promising anode material for sodium ion batteries.  相似文献   
90.
We report the direct observation of microstructural changes of LixSi electrode with lithium insertion. HRTEM experiments confirm that lithiated amorphous silicon forms a shell around a core made up of the unlithiated silicon and that fully lithiated silicon contains a large number of pores of which concentration increases toward the center of the particle. Chemomechanical modeling is employed in order to explain this mechanical degradation resulting from stresses in the LixSi particles with lithium insertion. Because lithiation‐induced volume expansion and pulverization are the key mechanical effects that plague the performance and lifetime of high‐capacity Si anodes in lithium‐ion batteries, our observations and chemomechanical simulation provide important mechanistic insight for the design of advanced battery materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号