首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   30篇
  2024年   2篇
  2023年   12篇
  2022年   22篇
  2021年   20篇
  2020年   14篇
  2019年   15篇
  2018年   12篇
  2017年   7篇
  2016年   9篇
  2015年   13篇
  2014年   9篇
  2013年   20篇
  2012年   6篇
  2011年   11篇
  2010年   8篇
  2009年   7篇
  2008年   8篇
  2007年   9篇
  2006年   4篇
  2005年   8篇
  2004年   10篇
  2003年   8篇
  2002年   8篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有264条查询结果,搜索用时 93 毫秒
101.
Two‐component systems (TCS) constitute the predominant means by which prokaryotes read out and adapt to their environment. Canonical TCSs comprise a sensor histidine kinase (SHK), usually a transmembrane receptor, and a response regulator (RR). In signal‐dependent manner, the SHK autophosphorylates and in turn transfers the phosphoryl group to the RR which then elicits downstream responses, often in form of altered gene expression. SHKs also catalyze the hydrolysis of the phospho‐RR, hence, tightly adjusting the overall degree of RR phosphorylation. Photoreceptor histidine kinases are a subset of mostly soluble, cytosolic SHKs that sense light in the near‐ultraviolet to near‐infrared spectral range. Owing to their experimental tractability, photoreceptor histidine kinases serve as paradigms and provide unusually detailed molecular insight into signal detection, decoding, and regulation of SHK activity. The synthesis of recent results on receptors with light‐oxygen‐voltage, bacteriophytochrome and microbial rhodopsin sensor units identifies recurring, joint signaling strategies. Light signals are initially absorbed by the sensor module and converted into subtle rearrangements of α helices, mostly through pivoting and rotation. These conformational transitions propagate through parallel coiled‐coil linkers to the effector unit as changes in left‐handed superhelical winding. Within the effector, subtle conformations are triggered that modulate the solvent accessibility of residues engaged in the kinase and phosphatase activities. Taken together, a consistent view of the entire trajectory from signal detection to regulation of output emerges. The underlying allosteric mechanisms could widely apply to TCS signaling in general.  相似文献   
102.
G‐protein coupled receptors (GPCRs), a major gatekeeper of extracellular signals on plasma membrane, are unarguably one of the most important therapeutic targets. Given the recent discoveries of allosteric modulations, an allosteric wiring diagram of intramolecular signal transductions would be of great use to glean the mechanism of receptor regulation. Here, by evaluating betweenness centrality (CB) of each residue, we calculate maps of information flow in GPCRs and identify key residues for signal transductions and their pathways. Compared with preexisting approaches, the allosteric hotspots that our CB‐based analysis detects for A2A adenosine receptor (A2AAR) and bovine rhodopsin are better correlated with biochemical data. In particular, our analysis outperforms other methods in locating the rotameric microswitches, which are generally deemed critical for mediating orthosteric signaling in class A GPCRs. For A2AAR, the inter‐residue cross‐correlation map, calculated using equilibrium structural ensemble from molecular dynamics simulations, reveals that strong signals of long‐range transmembrane communications exist only in the agonist‐bound state. A seemingly subtle variation in structure, found in different GPCR subtypes or imparted by agonist bindings or a point mutation at an allosteric site, can lead to a drastic difference in the map of signaling pathways and protein activity. The signaling map of GPCRs provides valuable insights into allosteric modulations as well as reliable identifications of orthosteric signaling pathways. Proteins 2014; 82:727–743. © 2013 Wiley Periodicals, Inc.  相似文献   
103.
The ATPase activity of many types of molecular chaperones is stimulated by polypeptide substrate binding via molecular mechanisms that are, for the most part, unknown. Here, we report that such stimulation of the ATPase activity of GroEL is abolished when its conserved apical domain residue Glu257 is replaced by alanine. This mutation is also found to convert the ATPase profile of GroEL, a group I chaperonin, into one that is characteristic of group II chaperonins. Steady-state and transient kinetic analysis indicate that both effects are due, at least in part, to a reduction of the affinity of GroEL for ADP. This finding indicates that nonfolded proteins stimulate ATP hydrolysis by accelerating the off-rate of the ADP formed, thereby allowing more rapid cycles of ATP binding and hydrolysis.  相似文献   
104.
In the context of stereochemical modeling, it has been shown that damage to the hydration shell of proteins and nucleic acids should be confronted by considerable kinetic barriers caused by the breakage of hydrogen bonds of the shell. Since the structure of the hydration shell is determined by the surface of proteins and nucleic acids, the kinetic barriers arising during the breakage of the shell differ greatly in different regions of the biopolymer surface. In turn, this means that the probability of the participation of different surface regions of proteins and nucleic acids in intermolecular interactions should vary within a wide range; i.e., hydration shells should enhance the selectivity of molecular recognition.  相似文献   
105.
RG13 is a 72 kDa engineered allosteric enzyme comprised of a fusion between maltose binding protein (MBP) and TEM1 β‐lactamase (BLA) for which maltose is a positive effector of BLA activity. We have used NMR spectroscopy to acquire [15N, 1H]‐TROSY‐HSQC spectra of RG13 in the presence and absence of maltose. The RG13 chemical shift data was compared to the published chemical shift data of MBP and BLA. The spectra are consistent with the expectation that the individual domain structures of RG13 are substantially conserved from MBP and BLA. Differences in the spectra are consistent with the fusion geometry of MBP and BLA and the maltose‐dependent differences in the kinetics of RG13 enzyme activity. In particular, the spectra provide evidence for a maltose‐dependent conformational change of a key active site glutamate involved in deacylation of the enzyme‐substrate intermediate. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
106.
107.
Insulin receptor (IR) and the epidermal growth factor receptor (EGFR) were the first receptor tyrosine kinases (RTKs) to be studied in detail. Both are important clinical targets—in diabetes and cancer, respectively. They have unique extracellular domain compositions among RTKs, but share a common module with two ligand‐binding leucine‐rich‐repeat (LRR)‐like domains connected by a flexible cysteine‐rich (CR) domain (L1‐CR‐L2 in IR/domain, I‐II‐III in EGFR). This module is linked to the transmembrane region by three fibronectin type III domains in IR, and by a second CR in EGFR. Despite sharing this conserved ligand‐binding module, IR and EGFR family members are considered mechanistically distinct—in part because IR is a disulfide‐linked (αβ)2 dimer regardless of ligand binding, whereas EGFR is a monomer that undergoes ligand‐induced dimerization. Recent cryo‐electron microscopy (cryo‐EM) structures suggest a way of unifying IR and EGFR activation mechanisms and origins of negative cooperativity. In EGFR, ligand engages both LRRs in the ligand‐binding module, “closing” this module to break intramolecular autoinhibitory interactions and expose new dimerization sites for receptor activation. How insulin binds the activated IR was less clear until now. Insulin was known to associate with one LRR (L1), but recent cryo‐EM structures suggest that it also engages the second LRR (albeit indirectly) to “close” the L1‐CR‐L2 module, paralleling EGFR. This transition simultaneously breaks autoinhibitory interactions and creates new receptor‐receptor contacts—remodeling the IR dimer (rather than inducing dimerization per se) to activate it. Here, we develop this view in detail, drawing mechanistic links between IR and EGFR.  相似文献   
108.
RING finger proteins constitute the large majority of ubiquitin ligases (E3s) and function by interacting with ubiquitin‐conjugating enzymes (E2s) charged with ubiquitin. How low‐affinity RING–E2 interactions result in highly processive substrate ubiquitination is largely unknown. The RING E3, gp78, represents an excellent model to study this process. gp78 includes a high‐affinity secondary binding region for its cognate E2, Ube2g2, the G2BR. The G2BR allosterically enhances RING:Ube2g2 binding and ubiquitination. Structural analysis of the RING:Ube2g2:G2BR complex reveals that a G2BR‐induced conformational effect at the RING:Ube2g2 interface is necessary for enhanced binding of RING to Ube2g2 or Ube2g2 conjugated to Ub. This conformational effect and a key ternary interaction with conjugated ubiquitin are required for ubiquitin transfer. Moreover, RING:Ube2g2 binding induces a second allosteric effect, disrupting Ube2g2:G2BR contacts, decreasing affinity and facilitating E2 exchange. Thus, gp78 is a ubiquitination machine where multiple E2‐binding sites coordinately facilitate processive ubiquitination.  相似文献   
109.
Allostery, the modulation of function of a protein at one site by the binding of a ligand at a different site, is a property of many proteins. Two kinetically distinct models have been proposed: i) The induced fit model in which the ligand binds to the protein and then induces the conformational change. ii) The population selection model, in which the protein spontaneously undergoes a conformational change, which is then ‘captured’ by the ligand. Using measured kinetic constants for the lac repressor the contribution of population selection vs. induced dissociation is quantified by simulating the kinetics of allostery. At very low inducer concentration, both mechanisms contribute significantly. Total induction, though, is small under these conditions. At increasing levels of induction the induced dissociation mechanism soon dominates, first due to binding of one inducer, and then from two inducers binding.  相似文献   
110.
O'Donnell SE  Yu L  Fowler CA  Shea MA 《Proteins》2011,79(3):765-786
Calcineurin (CaN, PP2B, PPP3), a heterodimeric Ca2+‐calmodulin‐dependent Ser/Thr phosphatase, regulates swimming in Paramecia, stress responses in yeast, and T‐cell activation and cardiac hypertrophy in humans. Calcium binding to CaNB (the regulatory subunit) triggers conformational change in CaNA (the catalytic subunit). Two isoforms of CaNA (α, β) are both abundant in brain and heart and activated by calcium‐saturated calmodulin (CaM). The individual contribution of each domain of CaM to regulation of calcineurin is not known. Hydrodynamic analyses of (Ca2+)4‐CaM1–148 bound to βCaNp, a peptide representing its CaM‐binding domain, indicated a 1:1 stoichiometry. βCaNp binding to CaM increased the affinity of calcium for the N‐ and C‐domains equally, thus preserving intrinsic domain differences, and the preference of calcium for sites III and IV. The equilibrium constants for individual calcium‐saturated CaM domains dissociating from βCaNp were ~1 μM. A limiting Kd ≤ 1 nM was measured directly for full‐length CaM, while thermodynamic linkage analysis indicated that it was approximately 1 pM. βCaNp binding to 15N‐(Ca2+)4‐CaM1–148 monitored by 15N/1HN HSQC NMR showed that association perturbed the N‐domain of CaM more than its C‐domain. NMR resonance assignments of CaM and βCaNp, and interpretation of intermolecular NOEs observed in the 13C‐edited and 12C‐14N‐filtered 3D NOESY spectrum indicated anti‐parallel binding. The sole aromatic residue (Phe) located near the βCaNp C‐terminus was in close contact with several residues of the N‐domain of CaM outside the hydrophobic cleft. These structural and thermodynamic properties would permit the domains of CaM to have distinct physiological roles in regulating activation of βCaN. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号