首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9025篇
  免费   697篇
  国内免费   254篇
  2023年   136篇
  2022年   140篇
  2021年   296篇
  2020年   301篇
  2019年   343篇
  2018年   403篇
  2017年   261篇
  2016年   234篇
  2015年   269篇
  2014年   495篇
  2013年   621篇
  2012年   346篇
  2011年   463篇
  2010年   386篇
  2009年   458篇
  2008年   430篇
  2007年   551篇
  2006年   409篇
  2005年   314篇
  2004年   244篇
  2003年   298篇
  2002年   263篇
  2001年   162篇
  2000年   137篇
  1999年   146篇
  1998年   125篇
  1997年   129篇
  1996年   122篇
  1995年   109篇
  1994年   114篇
  1993年   102篇
  1992年   99篇
  1991年   97篇
  1990年   57篇
  1989年   49篇
  1988年   36篇
  1987年   49篇
  1986年   36篇
  1985年   93篇
  1984年   99篇
  1983年   55篇
  1982年   75篇
  1981年   60篇
  1980年   79篇
  1979年   51篇
  1978年   55篇
  1977年   38篇
  1976年   35篇
  1975年   33篇
  1974年   39篇
排序方式: 共有9976条查询结果,搜索用时 437 毫秒
121.
Bone remodelling is mediated by orchestrated communication between osteoclasts and osteoblasts which, in part, is regulated by coupling and anti-coupling factors. Amongst formally known anti-coupling factors, Semaphorin 4D (Sema4D), produced by osteoclasts, plays a key role in downmodulating osteoblastogenesis. Sema4D is produced in both membrane-bound and soluble forms; however, the mechanism responsible for producing sSema4D from osteoclasts is unknown. Sema4D, TACE and MT1-MMP are all expressed on the surface of RANKL-primed osteoclast precursors. However, only Sema4D and TACE were colocalized, not Sema4D and MT1-MMP. When TACE and MT1-MMP were either chemically inhibited or suppressed by siRNA, TACE was found to be more engaged in shedding Sema4D. Anti-TACE-mAb inhibited sSema4D release from osteoclast precursors by ~90%. Supernatant collected from osteoclast precursors (OC-sup) suppressed osteoblastogenesis from MC3T3-E1 cells, as measured by alkaline phosphatase activity, but OC-sup harvested from the osteoclast precursors treated with anti-TACE-mAb restored osteoblastogenesis activity in a manner that compensates for diminished sSema4D. Finally, systemic administration of anti-TACE-mAb downregulated the generation of sSema4D in the mouse model of critical-sized bone defect, whereas local injection of recombinant sSema4D to anti-TACE-mAb-treated defect upregulated local osteoblastogenesis. Therefore, a novel pathway is proposed whereby TACE-mediated shedding of Sema4D expressed on the osteoclast precursors generates functionally active sSema4D to suppress osteoblastogenesis.  相似文献   
122.
Thermostable direct hemolysin (TDH) is a ~19 kDa, hemolytic pore-forming toxin from the gram-negative marine bacterium Vibrio parahaemolyticus, one of the causative agents of seafood-borne acute gastroenteritis and septicemia. Previous studies have established that TDH exists as a tetrameric assembly in physiological state; however, there is limited knowledge regarding the molecular arrangement of its disordered N-terminal region (NTR)—the absence of which has been shown to compromise TDH's hemolytic and cytotoxic abilities. In our current study, we have employed single-particle cryo-electron microscopy to resolve the solution-state structures of wild-type TDH and a TDH construct with deletion of the NTR (NTD), in order to investigate structural aspects of NTR on the overall tetrameric architecture. We observed that both TDH and NTD electron density maps, resolved at global resolutions of 4.5 and 4.2 Å, respectively, showed good correlation in their respective oligomeric architecture. Additionally, we were able to locate extra densities near the pore opening of TDH which might correspond to the disordered NTR. Surprisingly, under cryogenic conditions, we were also able to observe novel supramolecular assemblies of TDH tetramers, which we were able to resolve to 4.3 Å. We further investigated the tetrameric and inter-tetrameric interaction interfaces to elaborate upon the key residues involved in both TDH tetramers and TDH super assemblies. Our current structural study will aid in understanding the mechanistic aspects of this pore-forming toxin and the role of its disordered NTR in membrane interaction.  相似文献   
123.
Nonalcoholic fatty liver disease (NAFLD) is a strong stimulant of cardiovascular diseases, affecting one-quarter of the world's population. TBC1 domain family member 25 (TBC1D25) regulates the development of myocardial hypertrophy and cerebral ischemia–reperfusion injury; however, its effect on NAFLD/nonalcoholic steatohepatitis (NASH) has not been reported. In this study, we demonstrated that TBC1D25 expression is upregulated in NASH. TBC1D25 deficiency aggravated hepatic steatosis, inflammation, and fibrosis in NASH. In vitro tests revealed that TBC1D25 overexpression restrained NASH responses. Subsequent mechanistic validation experiments demonstrated that TBC1D25 interfered with NASH progression by inhibiting abnormal lipid accumulation and inflammation. TBC1D25 deficiency significantly promoted NASH occurrence and development. Therefore, TBC1D25 may potentially be used as a clinical therapeutic target for NASH treatment.  相似文献   
124.
Enzyme IIA and HPr are central regulatory proteins of the bacterial phosphoenolpyruvate:sugar phosphotransferase (PTS) system. Three-dimensional structures of the glucose enzyme IIA domain (IIAglc) and HPr of Bacillus subtilis and Escherichia coli have been studied by both X-ray crystallography and Nuclear Magnetic Resonance (NMR) Spectroscopy. Phosphorylation of HPr of B. subtilis and IIAglc of E. coli have also been characterized by NMR spectroscopy. In addition, the binding interfaces of B. subtilis HPr and IIAglc have been identified from backbone chemical shift changes. This paper reviews these recent advances in the understanding of the three-dimensional structures of HPr and IIAglc and their interaction with each other. © 1993 Wiley-Liss, Inc.  相似文献   
125.
We investigated the effects of vitamin D3 on the signaling pathways by prostaglandin E2 (PGE2) in osteoblast-like MC3T3-E1 cells. The pretreatment with 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), an active form of vitamin D3, significantly inhibited cAMP accumulation induced by 10 μM PGE2 in a dose-dependent manner in the range between 1 pM and 1 nM. This effect of 1,25-(OH)2D3 was dependent on the time of pretreatment up to 8 h. 1,25-(OH)2D3 also inhibited the cAMP accumulation induced by NaF, a GTP-binding protein activator, or forskolin which directly activates adenylate cyclase. On the other hand, 1,25-(OH)2D3 significantly inhibited PGE2-induced IP3 formation in a dose-dependent manner between 10 pM and 1 nM. However, 1,25-(OH)2D3 had little effect on NaF-induced IP3 formation. The pretreatment with 24,25-dihydroxyvitamin D3, an inactive form of vitamin D3, affected neither cAMP accumulation nor IP3 formation induced by PGE2. These results strongly suggest that 1,25-(OH)2D3 modulates the signaling by PGE2 in osteoblast-like cells as follows: the inhibitory effect on the cAMP production is exerted at a point downstream from adenylate cyclase and the inhibitory effect on the phosphoinositide hydrolysis is exerted at the point between the PGE2 receptor and GTP-binding protein, probably Gi2.  相似文献   
126.
Macrophage colony stimulating factor (CSF-1) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are potent inducers of macrophage differentiation. Both appear to modulate protein phosphorylation, at least in part, through protein kinase C (PKC) raising the question as to whether they concurrently impact on macrophage-like cells. In this regard, we utilized the CSF-1 dependent murine macrophage-like line BAC 1.25F5. CSF-1 treatment of these cells for 30 min leads to particular phosphorylation of a 165 kDa protein, the putative CSF-1 receptor, and a 210 kDa moiety. 1,25(OH)2D3 exposure for 24 h prior to addition of CSF-1 enhances phosphorylation of the 165 kDa species and, especially, the 210 kDa protein. Phosphorylation of the latter protein is 1,25(OH)2D3 dose- and time-dependent and the molecule is specifically immunoprecipitated with a rabbit polyclonal anti-talin antibody. Experiments with okadaic acid show that the enhanced phosphorylation of talin does not result from serine phosphatase inhibition. CSF-1 and 1,25(OH)2D3, alone or in combination, do not increase talin protein expression. The tyrosine kinase inhibitor, genestein, blocks 1,25(OH)2D3/CSF-1 induced phosphorylation of the putative CSF-1 receptor but has no effect on talin phosphorylation which occurs exclusively on serine. In contrast to genestein, staurosporin, an inhibitor of PKC, inhibits phosphorylation of talin. Moreover, exposure of 1,25(OH)2D3 pretreated cells to phorbol 12-myristate 13-acetate (PMA) in place of CSF-1 also prompts talin phosphorylation. Finally, 1,25(OH)2D3 enhances 3[H]PDBu binding, indicating that the steroid increases PMA receptor capacity. Thus, CSF-1 and 1,25(OH)2D3 act synergistically via PKC to phosphorylate talin, a cytoskeletal-associated protein.  相似文献   
127.
To investigate the role of proline in defining β turn conformations within cyclic hexa- and pentapeptides we synthesized and determined the conformations of a series of L - and D -proline-containing peptides by means of 2D NMR spectroscopy and restrained molecular dynamics simulations. Due to cis/trans isomerism the L -proline peptides adopt at least two different conformations that are analyzed and compared to the structures of the corresponding D -proline peptides. The cis conformations of the compounds cyclo(-Pro-Ala-Ala-Pro-Ala-Ala-), cyclo(-Arg-Gly-Asp-Phe-Pro-Gly-), cyclo(-Arg-Gly-Asp-Phe-Pro-Ala-), cyclo(-Pro-Ala-Ala-Ala-Ala--), and cyclo(-Pro-Ala-Pro-Ala-Ala-) form uncommon βVI turns that mimic the turn geometries found in crystallographically refined protein structures at such a detailed level that even preferred side chain orientations are reproduced. The ratios of the cis/trans isomers are analyzed in terms of the steric demand of the proline-following residue. The conformational details derived from this study illustrate the importance of the examination of small model compounds derived from protein loop regions, especially if bioactive recognition sequences, such as RGD (Arg-Gly-Asp), are incorporated. © 1993 Wiley-Liss, Inc.  相似文献   
128.
Summary We recently proposed a novel four-dimensional (4D) NMR strategy for the assignment of backbone nuclei in spectra of 13C/15N-labelled proteins (Boucher et al. (1992) J. Am. Chem. Soc., 114, 2262–2264 and J. Biomol. NMR, 2, 631–637). In this paper we extend this approach with a new constant time 4D HCC(CO)NNH experiment that also correlates the chemical shifts of the aliphatic sidechain (1H and 13C) and backbone (1H, 13C and 15N) nuclei. It separates the sidechain resonances, which may heavily overlap in spectra of proteins with large numbers of similar residues, according to the backbone nitrogen and amide proton chemical shifts. When used in conjunction with a 4D HCANNH or HNCAHA experiment it allows, in principle, complete assignment of aliphatic sidechain and backbone resonances with just two 4D NMR experiments.  相似文献   
129.
Summary A new method, a restrained Monte Carlo (rMC) calculation, is demonstrated for generating high-resolution structures of DNA oligonucleotides in solution from interproton distance restraints and bounds derived from complete relaxation matrix analysis of two-dimensional nuclear Overhauser effect (NOE) spectral peak intensities. As in the case of restrained molecular dynamics (rMD) refinement of structures, the experimental distance restraints and bounds are incorporated as a pseudo-energy term (or penalty function) into the mathematical expression for the molecular energy. However, the use of generalized helical parameters, rather than Cartesian coordinates, to define DNA conformation increases efficiency by decreasing by an order of magnitude the number of parameters needed to describe a conformation and by simplifying the potential energy profile. The Metropolis Monte Carlo method is employed to simulate an annealing process. The rMC method was applied to experimental 2D NOE data from the octamer duplex d(GTA-TAATG)·d(CATTATAC). Using starting structures from different locations in conformational space (e.g. A-DNA and B-DNA), the rMC calculations readily converged, with a root-mean-square deviation (RMSD) of <0.3 Å between structures generated using different protocols and starting structures. Theoretical 2D NOE peak intensities were calculated for the rMC-generated structures using the complete relaxation matrix program CORMA, enabling a comparison with experimental intensities via residual indices. Simulation of the vicinal proton coupling constants was carried out for the structures generated, enabling a comparison with the experimental deoxyribose ring coupling constants, which were not utilized in the structure determination in the case of the rMC simulations. Agreement with experimental 2D NOE and scalar coupling data was good in all cases. The rMC structures are quite similar to that refined by a traditional restrained MD approach (RMSD<0.5 Å) despite the different force fields used and despite the fact that MD refinement was conducted with additional restraints imposed on the endocyclic torsion angles of deoxyriboses. The computational time required for the rMC and rMD calculations is about the same. A comparison of structural parameters is made and some limitations of both methods are discussed with regard to the average nature of the experimental restraints used in the refinement.Abbreviations MC Monte Carlo - rMC restrained Monte Carlo - MD molecular dynamics - rMD restrained molecular dynamics - DG distance geometry - EM energy minimization - 2D NOE two-dimensional nuclear Overhauser effect - DQF-COSY double-quantum-filtered correlation spectroscopy - RMSD root-mean-square deviation To whom correspondence should be addressed.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号